scholarly journals Insight Into Supersonic Combustion Using High-order Simulations

Author(s):  
Ioannis Kokkinakis ◽  
Dimitris Drikakis ◽  
Yun-qin He ◽  
Guo-zhu Liang

Abstract High-order simulations of supersonic combustion are presented to advance understanding of the complex chemically-reacting flow processes and identify unknown mechanisms of the high-speed combustion process. We have employed 11th-order accurate implicit large-eddy simulations in conjunction with thermochemistry models comprising 20 chemical reactions. We compare the computations with available experiments and discuss the accuracy and uncertainties in both. Jets emanating from above and below the hydrogen plumes influence the combustion process and accuracy of the predictions. The simulations reveal that high temperatures are sustained for a long-distance downstream of the combustion onset. A barycentric map for the Reynolds stresses is employed to analyse the turbulent anisotropy. We correlate the axisymmetric contraction and expansion of turbulence with the interaction of reflected-shock waves with the supersonic combustion hydroxyl production regions. The physics insights presented in this study could potentially lead to more efficient supersonic combustion and scramjet technologies.

Author(s):  
Alexander M. Molchanov ◽  
Anna A. Arsentyeva

An implicit fully coupled numerical method for modeling of chemically reacting flows is presented. Favre averaged Navier-Stokes equations of multi-component gas mixture with nonequilibrium chemical reactions using Arrhenius chemistry are applied. A special method of splitting convective fluxes is introduced. This method allows for using spatially second-order approximation in the main flow region and of first-order approximation in regions with discontinuities. To consider the effects of high-speed compressibility on turbulence the author suggests a correction for the model, which is linearly dependent on Mach turbulent number. For the validation of the code the described numerical procedures are applied to a series of flow and heat and mass transfer problems. These include supersonic combustion of hydrogen in a vitiated air, chemically reacting flow through fluid rocket nozzle, afterburning of fluid and solid rocket plumes, fluid dynamics and convective heat transfer in convergent-divergent nozzle. Comparison of the simulation with available experimental data showed a good agreement for the above problems.


1994 ◽  
Vol 6-6 (2-3) ◽  
pp. 161-179 ◽  
Author(s):  
V. T. Ton ◽  
A. R. Karagozian ◽  
F. E. Marble ◽  
S. J. Osher ◽  
B. E. Engquist

2018 ◽  
Vol 50 (7) ◽  
pp. 473-480 ◽  
Author(s):  
Peter J. Weddle ◽  
Canan Karakaya ◽  
Huayang Zhu ◽  
Raghu Sivaramakrishnan ◽  
Kirill Prozument ◽  
...  

1905 ◽  
Vol 59 (1537supp) ◽  
pp. 24627-24628
Author(s):  
Charles A. Mudge

2019 ◽  
Vol 29 (8) ◽  
pp. 1101-1117
Author(s):  
Lin Yang ◽  
Xiangdong Li ◽  
Jiyuan Tu

Due to the fast development of high-speed rail (HSR) around the world, high-speed trains (HSTs) are becoming a strong competitor against airliners in terms of long-distance travel. Compared with airliner cabins, HST cabins have much larger window sizes. When the big windows provide better lighting and view of the scenery, they also have significant effects on the thermal conditions in the cabins due to the solar radiation through them. This study presents a numerical study on the solar radiation on the thermal comfort in a typical HST cabin. The effect of solar radiation was discussed in terms of airflow pattern, temperature distribution and thermal comfort indices. Parametric studies with seven different daytime hours were carried out. The effect of using the roller curtain was also studied. The overall cabin air temperature, especially near passengers, was found to have significantly increased by solar radiation. Passengers sitting next to windows were recorded to have an obvious thermal comfort variation at different hours of the day. To improve the passengers’ comfort and reduce energy consumption during hot weather, the use of a curtain could effectively reduce the solar radiation effect in the cabin environment.


1985 ◽  
Vol 160 ◽  
pp. 29-45 ◽  
Author(s):  
Yasunari Takano ◽  
Teruaki Akamatsu

This paper analyses effects of chemical reactions on reflected-shock flow fields in shock tubes. The method of linearized characteristics is applied to analyse gasdynamic disturbances due to chemical reactions. The analysis treats cases where combustible gas is highly diluted in inert gas, and assumes that flows are one-dimensional and that upstream flows in front of the reflected-shock waves are in the frozen state. The perturbed gasdynamic properties in the reflected-shock flow fields are shown to be expressible mainly in terms of a heat-release function for combustion process. In particular, simple relations are obtained between the heat-release function and the physical properties at the end wall of a shock tube. As numerical examples of the analysis, the present formulation is applied to calculate gasdynamic properties in the reflected-shock region in a H2–O2–Ar mixture. Procedures are demonstrated for calculation of the heat-release function by numerically integrating rate equations for chemical species. The analytical results are compared with rigorous solutions obtained numerically by use of a finite-difference method. It is shown that the formulation can afford exact solutions in cases where chemical behaviours are not essentially affected by gasdynamic behaviours. When the induction time of the combustion process is reduced to some extent owing to gasdynamic disturbances, some discrepancies appear between analytical results and rigorous solutions. An estimate is made of the induction-time reduction, and a condition is written down for applicability of the analysis.


Sign in / Sign up

Export Citation Format

Share Document