scholarly journals Microtubule Associated Protein 4 Phosphorylation-Induced Epithelial-to-Mesenchymal Transition of Podocyte Leads to Proteinuria in Diabetic Nephropathy

Author(s):  
Lingfei Li ◽  
Yanhai Feng ◽  
Junhui Zhang ◽  
Qiong Zhang ◽  
Jun Ren ◽  
...  

Abstract Background Diabetic nephropathy (DN) involves various structural and functional changes because of chronic glycemic assault and kidney failure. Proteinuria is an early clinical manifestation of DN, but the associated pathogenesis remains elusive. This study aimed to investigate the role of microtubule associated protein 4 (MAP4) phosphorylation (p-MAP4) in proteinuria in DN and its possible mechanisms. Methods In this study, the urine samples of diabetic patients and kidney tissues of streptozotocin (STZ)-induced diabetic mice were obtained to detect changes of microtubule associated protein 4 (MAP4) phosphorylation. A murine model of hyperphosphorylated MAP4 was established to examine the effect of MAP4 phosphorylation in DN. Podocyte was applied to explore changes of kidney phenotypes and potential mechanisms with multiple methods. Results Our results demonstrated elevated content of p-MAP4 in diabetic patients’ urine samples, and increased kidney p-MAP4 in streptozocin (STZ)-induced diabetic mice. Moreover, p-MAP4 triggered proteinuria with aging in mice, and induced epithelial-to-mesenchymal transition (EMT) and apoptosis in podocytes. Additionally, p-MAP4 mice were much more susceptible to STZ treatment and showed robust DN pathology as compared to wild-type mice. In vitro study revealed high glucose (HG) triggered elevation of p-MAP4, rearrangement of microtubules and F-actin filaments with enhanced cell permeability, accompanied with dedifferentiation and apoptosis of podocytes. These effects were significantly reinforced by MAP4 hyperphosphorylation, and were rectified by MAP4 dephosphorylation. Notably, pretreatment of p38/MAPK inhibitor SB203580 reinstated all HG-induced pathological alterations. Conclusions The findings indicated a novel role for p-MAP4 in causing proteinuria in DN. Our results indicated the therapeutic potential of MAP4 in protecting against proteinuria and related diseases.

2021 ◽  
Vol 22 (10) ◽  
pp. 5194
Author(s):  
Paola Pontrelli ◽  
Francesca Conserva ◽  
Rossella Menghini ◽  
Michele Rossini ◽  
Alessandra Stasi ◽  
...  

Diabetic nephropathy (DN) is the most frequent cause of end-stage renal disease. Tubulointerstitial accumulation of lysine 63 (K63)-ubiquitinated (Ub) proteins is involved in the progression of DN fibrosis and correlates with urinary miR-27b-3p downregulation. We explored the renoprotective effect of an inhibitor of K63-Ub (NSC697923), alone or in combination with the ACE-inhibitor ramipril, in vitro and in vivo. Proximal tubular epithelial cells and diabetic DBA/2J mice were treated with NSC697923 and/or ramipril. K63-Ub protein accumulation along with α-SMA, collagen I and III, FSP-1, vimentin, p16INK4A expression, SA-α Gal staining, Sirius Red, and PAS staining were measured. Finally, we measured the urinary albumin to creatinine ratio (uACR), and urinary miR-27b-3p expression in mice. NSC697923, both alone and in association with ramipril, in vitro and in vivo inhibited hyperglycemia-induced epithelial to mesenchymal transition by significantly reducing K63-Ub proteins, α-SMA, collagen I, vimentin, FSP-1 expression, and collagen III along with tubulointerstitial and glomerular fibrosis. Treated mice also showed recovery of urinary miR-27b-3p and restored expression of p16INK4A. Moreover, NSC697923 in combination with ramipril demonstrated a trend in the reduction of uACR. In conclusion, we suggest that selective inhibition of K63-Ub, when combined with the conventional treatment with ACE inhibitors, might represent a novel treatment strategy to prevent the progression of fibrosis and proteinuria in diabetic nephropathy and we propose miR-27b-3p as a biomarker of treatment efficacy.


2012 ◽  
Vol 303 (5) ◽  
pp. F733-F745 ◽  
Author(s):  
Ivonne Loeffler ◽  
Marita Liebisch ◽  
Gunter Wolf

Epithelial-to-mesenchymal transition (EMT) is an important mechanism of renal tubulo-interstitial fibrosis in diabetic nephropathy (DN). Inducers of EMT, among others, are transforming growth factor-β1(TGF-β1) as well as extracellular collagens. In renal cells of diabetic mice and in kidneys of patients with DN, the expression of collagen VIII (gene: Col8α1/α2) is enhanced and characteristic features of DN in streptozotocin (STZ)-induced diabetic Col8α1/α2 knockout-(KO) mice are attenuated compared with diabetic wild-type mice. This study aimed to investigate whether collagen type VIII may influence the induction of EMT. DN was induced in wild-type and Col8α1/α2-KO mice using the established and widely accepted low-dose STZ model [treatment for 5 consecutive days (50 mg/kg)]. Healthy and diabetic mice were analyzed for changes in renal function and the expression of EMT-related genes and proteins. Renal morphology, fibrosis, and various EMT markers were studied in kidneys using immunohistological and molecular biological methods. Knockout of Col8α1/α2 attenuated albuminuria, extracellular matrix production, as well as fibrosis. Furthermore, the kidneys of diabetic Col8α1/α2-KO mice showed a marked reduction in interstitial myofibroblasts, and in tubular cells the inhibition of the expression of epithelial markers as well as the expression of typical mesenchymal markers was reduced. The present study demonstrates that in contrast to diabetic wild-type mice EMT-like changes were attenuated in diabetic Col8α1/α2-KO mice, which indicates that either collagen VIII may be one of the major inducers of EMT-like changes in kidneys of diabetic wild-type mice or/possibly the lack of Col8α1/α2 disrupts TGF-β1-induced EMT-like changes.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yingchun Zhu ◽  
Jiang Xu ◽  
Wenxing Liang ◽  
Ji Li ◽  
Linhong Feng ◽  
...  

Recently, microRNAs have been recognized as crucial regulators of diabetic nephropathy (DN) development. Epithelial-to-mesenchymal transition (EMT) can play a significant role in tubulointerstitial fibrosis, and it is a hallmark of diabetic nephropathy progression. Nevertheless, the function of miR-98-5p in the modulation of EMT and renal fibrosis during DN remains barely investigated. Hence, identifying the mechanisms of miR-98-5p in regulating EMT and fibrosis is of huge significance. In our present research, decreased miR-98-5p was demonstrated in db/db mice and mice mesangial cells treated with the high dose of glucose. Meanwhile, activated EMT and increased fibrosis was accompanied with the decrease of miR-98-5p in vitro and in vivo. Additionally, to further find out the roles of miR-98-5p in DN development, overexpression of miR-98-5p was applied. Firstly, in vivo investigation exhibited that elevation of miR-98-5p restrained proteinuria, serum creatinine, BUN, the EMT process, and fibrosis. Furthermore, high glucose was able to promote mice mesangial cell proliferation, EMT process, and induced renal fibrosis, which could be prevented by overexpression of miR-98-5p. Moreover, high mobility group A (HMGA2) can exhibit an important role in diverse biological processes. Here, HMGA2 was investigated as a target of miR-98-5p currently. Luciferase reporter assay was conducted and the correlation of miR-98-5p and HMGA2 was validated. Moreover, it was displayed that HMGA2 was remarkably elevated in db/db mice and mice mesangial cells. Furthermore, miR-98-5p strongly depressed HMGA2 protein and mRNA levels in mice mesangial cells. Overall, these revealed miR-98-5p could suppress the EMT process and renal fibrosis through targeting HMGA2 in DN.


Author(s):  
Yi-Chun Tsai ◽  
Wei-Wen Hung ◽  
Wei-An Chang ◽  
Ping-Hsun Wu ◽  
Ling-Yu Wu ◽  
...  

Background: Diabetic nephropathy (DN) is an increasing threat to human health and is regarded to be the leading cause of end-stage renal disease worldwide. Exosomes deliver biomolecule massages and may play a key role in cell communication and the progression of DN.Methods: A cross-disciplinary study, including in vivo, in vitro, and human studies, was conducted to explore the cross-talk within proximal tubular epithelial cells (PTECs) in DN. Exosomal protein from PTECs treated with high glucose (HG) was purified and examined using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Next-generation sequencing (NGS) was utilized to analyze RNAs extracted from PTECs from a type 2 diabetic patient and a normal individual. HK-2 cells were used to assess exosomal protein and its modulation and biofunction in DN. Normal individuals and type 2 diabetic patients were enrolled, and nondiabetic db/m mice and diabetic db/db mice were used to validate the molecular mechanism of exosomes in DN.Results: HG stimulated PTECs to increase Fibulin-1 (FBLN1) expression, and PTECs secreted FBLN1 through exosome delivery, thereby inducing epithelial–mesenchymal transition (EMT) in PTECs. Transcriptome analysis found that FBLN1 expression was modulated by miR-1269b, which was downregulated by HG in HK-2 cells. While transfection of miR-1269b reversed FBLN1-mediated EMT in PTECs, miR-1269b inhibitor modulated the phenotype of PTECs toward mesenchymal type under normal glucose (NG) condition. Most importantly, urinary FBLN1 and exosomal miR-1269b levels were correlated with the severity of kidney injury in type 2 diabetic patients.Conclusion: This study demonstrated the communication within PTECs through exosome transmission in an autocrine pattern. MiR-1269b–FBLN1 epigenetic regulatory network could be a potential therapeutic strategy to prevent the progression of DN.


2021 ◽  
Author(s):  
Fengzhen Wang ◽  
Dong Sun ◽  
Haihan Sun ◽  
Bangjie Zuo ◽  
Kun Shi ◽  
...  

Abstract The aim of the study was to compare the role of metformin on tubulointerstitial fibrosis (TIF) in different stages of diabetic nephropathy (DN) in vivo and evaluate its mechanism in high-glucose-treated Renal tubular epithelial cells (RTECs) in vitro. Sprague-Dawley (SD) rats were used to establish model of DN, then the changes of biochemical indicators and body weight were measured. The degree of renal fibrosis was quantified via histological analysis, immunohistochemistry, and immunoblot. The underlying relationship between autophagy and DN was analyzed and the cellular regulatory mechanism of metformin on epithelial-to-mesenchymal transition (EMT) was detected. Metformin markedly improved renal function and showed histological restoration of renal tissues especially in the early stage of DN, with a significant improvement of autophagy and a low expression of fibrotic biomarkers (Fibronectin and Collagen I) in renal tissue. RTECs under hyperglycemic conditions exhibited inactivation of p-AMPK and activation of EMT. But the promotion of AMPK activated by metformin significantly improved renal autophagic function, inhibited the EMT of RTECs, attenuated TIF, so as to effectively prevent or delay the course of DN. This evidence provided theoretical and experimental basis for the following research on the potential clinical usefulness of metformin for the treatment of diabetic TIF.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Na Zhang ◽  
Yanbin Gao ◽  
Dawei Zou ◽  
Jinyang Wang ◽  
Jiaoyang Li ◽  
...  

Diabetic nephropathy (DN) is a major cause of chronic kidney failure and characterized by interstitial and glomeruli fibrosis. Epithelial-to-mesenchymal transition (EMT) plays an important role in the pathogenesis of DN. Tong xinluo (TXL), a Chinese herbal compound, has been used in China with established therapeutic efficacy in patients with DN. To investigate the molecular mechanism of TXL improving DN, KK-Ay mice were selected as models for the evaluation of pathogenesis and treatment in DN. In vitro, TGF-β1 was used to induce EMT. Western blot (WB), immunofluorescence staining, and real-time polymerase chain reaction (RT-PCR) were applied to detect the changes of EMT markers in vivo and in vitro, respectively. Results showed the expressions of TGF-β1 and its downstream proteins smad3/p-smad3 were greatly reduced in TXL group; meantime, TXL restored the expression of smad7. As a result, the expressions of collagen IV (Col IV) and fibronectin (FN) were significantly decreased in TXL group. In vivo, 24 h-UAER (24-hour urine albumin excretion ratio) and BUN (blood urea nitrogen) were decreased and Ccr (creatinine clearance ratio) was increased in TXL group compared with DN group. In summary, the present study demonstrates that TXL successfully inhibits TGF-β1-induced epithelial-to-mesenchymal transition in DN, which may account for the therapeutic efficacy in TXL-mediated renoprotection.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 692 ◽  
Author(s):  
Young Hwa Soung ◽  
Heesung Chung ◽  
Cecilia Yan ◽  
Jingfang Ju ◽  
Jun Chung

Our previous studies demonstrated the importance of arrestin domain containing 3 (ARRDC3), a metastasis suppressor, in inhibiting invasive and metastatic potential of triple negative breast cancer (TNBC) in vitro and in vivo. However, little is known about ARRDC3 mediated transcriptional control and its target genes that are implicated in its metastatic suppressing activity. In this study, we used miRNA array and subsequent functional analyses to identify miRNAs whose expression are significantly regulated by ARRDC3 in TNBC cells. We identified miR-200b as a major target gene of ARRDC3. miR-200b played an essential role in mediating ARRDC3 dependent reversal of EMT phenotypes and chemo-resistance to DNA damaging agents in TNBC cells. Expression of miR-200b also increased the expression of ARRDC3 as well in TNBC cells, suggesting a positive feedback loop between these two molecules. In addition, we combined the therapeutic powers of miR-200b and 5-fluorourancil (5-FU) into a single compound (5-FU-miR-200b) to maximize the synergistic effects of these compounds. Chemically modified miR-200b (5-FU-miR-200b mimic) was more effective in inhibiting metastatic potentials of TNBC cells than unmodified miR-200b and does not require transfection reagents, implying its therapeutic potential in TNBC. Our studies showed the importance of therapeutic targeting ARRDC3/miR-200b pathway in TNBC.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yu Tian ◽  
Bo Tang ◽  
Chengye Wang ◽  
Yan Wang ◽  
Jiakai Mao ◽  
...  

AbstractOncogenic ubiquitin-specific protease 22 (USP22) is implicated in a variety of tumours; however, evidence of its role and underlying molecular mechanisms in cholangiocarcinoma (CCA) development remains unknown. We collected paired tumour and adjacent non-tumour tissues from 57 intrahepatic CCA (iCCA) patients and evaluated levels of the USP22 gene and protein by qPCR and immunohistochemistry. Both the mRNA and protein were significantly upregulated, correlated with the malignant invasion and worse OS of iCCA. In cell cultures, USP22 overexpression increased CCA cell proliferation and mobility, and induced epithelial-to-mesenchymal transition (EMT). Upon an interaction, USP22 deubiquitinated and stabilized sirtuin-1 (SIRT1), in conjunction with Akt/ERK activation. In implantation xenografts, USP22 overexpression stimulated tumour growth and metastasis to the lungs of mice. Conversely, the knockdown by USP22 shRNA attenuated the tumour growth and invasiveness in vitro and in vivo. Furthermore, SIRT1 overexpression reversed the USP22 functional deficiency, while the knockdown acetylated TGF-β-activated kinase 1 (TAK1) and Akt. Our present study defines USP22 as a poor prognostic predictor in iCCA that cooperates with SIRT1 and facilitates tumour development.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chui Yiu Bamboo Chook ◽  
Francis M. Chen ◽  
Gary Tse ◽  
Fung Ping Leung ◽  
Wing Tak Wong

Abstract Cardiovascular disease is a major cause of mortality in diabetic patients due to the heightened oxidative stress and pro-inflammatory state in vascular tissues. Effective approaches targeting cardiovascular health for diabetic patients are urgently needed. Crocodile blood, an emerging dietary supplement, was suggested to have anti-oxidative and anti-inflammatory effects in vitro, which have yet to be proven in animal models. This study thereby aimed to evaluate whether crocodile blood can protect vascular function in diabetic mice against oxidation and inflammation. Diabetic db/db mice and their counterparts db/m+ mice were treated daily with crocodile blood soluble fraction (CBSF) or vehicle via oral gavage for 4 weeks before their aortae were harvested for endothelium-dependent relaxation (EDR) quantification using wire myograph, which is a well-established functional study for vascular function indication. Organ culture experiments culturing mouse aortae from C57BL/6 J mice with or without IL-1β and CBSF were done to evaluate the direct effect of CBSF on endothelial function. Reactive oxygen species (ROS) levels in mouse aortae were assessed by dihydroethidium (DHE) staining with inflammatory markers in endothelial cells quantified by quantitative polymerase chain reaction (qPCR). CBSF significantly improved deteriorated EDR in db/db diabetic mice through both diet supplementation and direct culture, with suppression of ROS level in mouse aortae. CBSF also maintained EDR and reduced ROS levels in mouse aortae against the presence of pro-inflammatory IL-1β. Under the pro-inflammatory state induced by IL-1β, gene expressions of inflammatory cytokines were downregulated, while the protective transcripts UCP2 and SIRT6 were upregulated in endothelial cells. Our study suggests a novel beneficial effect of crocodile blood on vascular function in diabetic mice and that supplementation of diet with crocodile blood may act as a complementary approach to protect against vascular diseases through anti-oxidation and anti-inflammation in diabetic patients. Graphical abstract


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2904
Author(s):  
Margot Gautier ◽  
Cécile Thirant ◽  
Olivier Delattre ◽  
Isabelle Janoueix-Lerosey

Neuroblastoma, a pediatric cancer of the peripheral sympathetic nervous system, is characterized by an important clinical heterogeneity, and high-risk tumors are associated with a poor overall survival. Neuroblastoma cells may present with diverse morphological and biochemical properties in vitro, and seminal observations suggested that interconversion between two phenotypes called N-type and S-type may occur. In 2017, two main studies provided novel insights into these subtypes through the characterization of the transcriptomic and epigenetic landscapes of a panel of neuroblastoma cell lines. In this review, we focus on the available data that define neuroblastoma cell identity and propose to use the term noradrenergic (NOR) and mesenchymal (MES) to refer to these identities. We also address the question of transdifferentiation between both states and suggest that the plasticity between the NOR identity and the MES identity defines a noradrenergic-to-mesenchymal transition, reminiscent of but different from the well-established epithelial-to-mesenchymal transition.


Sign in / Sign up

Export Citation Format

Share Document