scholarly journals Analysis of Uniform Film Thickness and Stationarypoints for the Thin Film Flow of Carreau Fluid Model in the Presence of Surface Tension Gradient

Author(s):  
Hameed Ashraf ◽  
Abida Parveen ◽  
Hamood Ur Rehman ◽  
Muhammad Imran Asjad ◽  
Bander N. Almutairi ◽  
...  

Abstract This article addresses the analysis of the uniform film thickness and stationary points forthe Carreau thin fluid film flow. The flow of fluid on a vertically upward moving cylinder takesplace in the presence of a surface tension gradient. The resulting non-linear and inhomogeneousordinary differential equation is solved for the series form solution using Adomian decompositionmethods (ADM). Stokes number St, inverse capillary number C, Weissenberg number W e andfluid behavior index n emerged as flow control parameters. The analysis showed that thepositions of stationary points transferred towards the surface of the cylinder by the increase ofSt and C while towards the fluid-air interface by the increase of n. W e delineated vice versaeffects on positions of stationary points for the shear thickening fluid film and shear thinningfluid film. The width of uniform film thickness reduces by an increment in the St and Cwhereas it increases by an increment in the n. The width of shear thickening uniform filmthickness increases whilst shear thinning uniform film thickness decreases as the W e increases. A comparison between the linearly viscous fluid and Carreau fluid is also made.

2010 ◽  
Vol 132 (8) ◽  
Author(s):  
H. Lan ◽  
J. L. Wegener ◽  
B. F. Armaly ◽  
J. A. Drallmeier

Three-dimensional (3D)—steady-developing-laminar-isothermal—and gravity-driven thin liquid film flow adjacent to an inclined plane is examined and the effects of film flow rate, surface tension, and surface inclination angle on the film thickness and film width are presented. The film flow was numerically simulated using the volume of fluid model and experimental verification was conducted by measuring film thickness and width using a laser focus displacement instrument. The steady film flow that is considered in this study does not have a leading contact line, however, it has two steady side contact lines with the substrate surface at the outer edge of its width. Results reveal that the film width decreases and the average film thickness increases as the film flows down the inclined plane. The film thickness and width decrease but its streamwise velocity increases as surface inclination angle (as measured from the horizontal plane) increases. A higher film flow rate is associated with a higher film thickness, a higher film width, and a higher average film velocity. Films with higher surface tension are associated with a smaller width and a higher average thickness. A ripple develops near the side contact line, i.e., the spanwise distribution of the film thickness exhibits peaks at the outer edges of the film width and the height of this ripple increases as the surface tension or the film flow rate increases. The width of the film decreases at a faster rate along the streamwise direction if liquid film has higher surface tension. Measurements of the film thickness and the film width compare favorably with the numerically simulated results.


Author(s):  
O Sheeja ◽  
B S Prabhu

Viscosity index improvers cause the lubricants to exhibit non-Newtonian flow behaviour and display shear thinning and normal stress differences. Shear thinning behaviour is studied by using a rotary shear viscometer. Owing to the non-availability of a rheogoniometer (for the measurement of normal stress differences), the first normal stress difference is calculated from the viscometric data using the Carreau viscosity function. The influence of the first normal stress difference on the hydrodynamic lubrication is analysed and shows that most of the commercial oils are inelasticoviscous in nature. Regression analysis shows that a large number of commercial lubricants follow the inelasticoviscous cubic law fluid model. Hence the cubic law fluid model is considered for the theoretical analysis. An experimental programme is developed to measure the effect of test parameters on the performance of a journal bearing lubricated with different types of non-Newtonian fluids. The experiments mainly include the measurements of the steady state characteristics like film thickness and fluid film friction. The experimental film thickness values are compared with the respective theoretical ones and are in good agreement. The theoretical performance characteristics are obtained through the simultaneous solution of the modified Reynolds equation using the cubic law fluid model and energy equation. The fluid film friction in a hydrodynamic journal bearing is experimentally determined through coastdown analysis. The results are presented in the form of an apparent Stribeck diagram of friction and are compared with the respective theoretical values.


2015 ◽  
Vol 36 (7) ◽  
pp. 847-862 ◽  
Author(s):  
A. M. Siddiqui ◽  
H. Ashraf ◽  
A. Walait ◽  
T. Haroon

2014 ◽  
Vol 592-594 ◽  
pp. 1371-1375
Author(s):  
Nitesh Talekar ◽  
Punit Kumar

Consideration of surface roughness in steady state EHL line contact is the first step towards understanding the lubrication of rough surface problem. Current paper investigates the use of sinusoidal waviness in the contact; more precisely it gives performance of real fluid in EHL line contact. The effect of various parameters like rolling velocity (U) and maximum Hertzian pressure (ph) on surface roughness by using properties of linear and exponential piezo-viscosity is taken into consideration to evaluate behavior of pressure distribution of load carrying fluid film and film thickness. Full isothermal, Newtonian simulation of EHL problem gives described effects. Spiking or fluctuation of pressure and film thickness curves is expected to show presence of irregularities on the surface chosen and amount of fluctuation depends on certain parameters and intensity of irregularities present. Rolling side domain of-4.5 ≤ X ≤ 1.5 with grid size ∆X=0.01375 is selected. A computer code is developed to solve Reynolds equation, which governs the generation of pressure in the lubricated contact zone is discritized and solved along with load balance equation using Newton-Raphson technique.


1996 ◽  
Vol 17 (4) ◽  
pp. 72-81 ◽  
Author(s):  
ALI G. BUDIMAN ◽  
C. FLORIJANTO ◽  
J. W. PALEN

2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Dong Song ◽  
Baowei Song ◽  
Haibao Hu ◽  
Xiaosong Du ◽  
Peng Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document