scholarly journals Luminescent Cavity Design for High Ambient Contrast Ratio, High Efficiency Displays

Author(s):  
Osman Cifci ◽  
Mikayla Yoder ◽  
Lu Xu ◽  
Hao Chen ◽  
Christopher Beck ◽  
...  

Abstract A key display characteristic is its efficiency (emitted light power divided by input power). While display efficiencies are being improved through emissive (e.g., quantum dot and organic light emitting display (OLED) designs1,2, which remove the highly inefficient color filters found in traditional liquid crystal displays (LCDs)3,4, polarization filters, which block about 50% of the light, remain required to inhibit ambient light reflection. We introduce a luminescent cavity design to replace both the color and polarization filters. Narrow-band, large Stokes shift, CdSe/CdS quantum dot emitters are embedded in a reflective cavity pixel element with a small top aperture. The remainder of the top surface is coated black reducing ambient light reflection. A single pixel demonstrates an extraction efficiency of 40.9% from a cavity with an 11% aperture opening. A simple proof-of-concept multi-pixel array is demonstrated.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1201
Author(s):  
Dan Dalacu ◽  
Philip J. Poole ◽  
Robin L. Williams

For nanowire-based sources of non-classical light, the rate at which photons are generated and the ability to efficiently collect them are determined by the nanowire geometry. Using selective-area vapour-liquid-solid epitaxy, we show how it is possible to control the nanowire geometry and tailor it to optimise device performance. High efficiency single photon generation with negligible multi-photon emission is demonstrated using a quantum dot embedded in a nanowire having a geometry tailored to optimise both collection efficiency and emission rate.


2016 ◽  
Vol 4 (21) ◽  
pp. 8161-8171 ◽  
Author(s):  
Chandu V. V. M. Gopi ◽  
Mallineni Venkata-Haritha ◽  
Young-Seok Lee ◽  
Hee-Je Kim

Metal sulfide decorated with ZnO NRs (ZnO/CoS, ZnO/NiS, ZnO/CuS and ZnO/PbS) were fabricated and used as efficient CEs for QDSSCs.


2015 ◽  
Vol 169 ◽  
pp. 103-108 ◽  
Author(s):  
Ling Li ◽  
Junying Xiao ◽  
Xichuan Yang ◽  
Wenming Zhang ◽  
Huayan Zhang ◽  
...  

2014 ◽  
Vol 136 (25) ◽  
pp. 9203-9210 ◽  
Author(s):  
Zhenxiao Pan ◽  
Iván Mora-Seró ◽  
Qing Shen ◽  
Hua Zhang ◽  
Yan Li ◽  
...  

2010 ◽  
Vol 654-656 ◽  
pp. 1130-1133 ◽  
Author(s):  
Christopher J. Summers ◽  
Hisham M. Menkara ◽  
Richard A. Gilstrap ◽  
Mazen Menkara ◽  
Thomas Morris

We report the development of new nanoparticle phosphors and quantum dot structures designed for applications to enhance the color rendering and efficiency of high brightness white LEDs, as well as for bio-sensing applications. The intrinsic problem of self-absorption, high toxicity, and high sensitivity to thermal quenching of conventional quantum dot systems has prevented their adoption to LED devices. Doped Cd-free quantum dots may circumvent these issues due to their distinct Stokes shift and improved stability at high temperature. We report on the modification of Mn-doped ZnSe/ZnS core-shell quantum dots for application to the (blue diode + yellow emitter) white LED system. Band gap tuning for 460 nm excitation, inorganic shell growth and in-situ monitoring for enhanced efficiency, and analysis of thermal stability will are reported.


Nanoscale ◽  
2017 ◽  
Vol 9 (38) ◽  
pp. 14451-14457 ◽  
Author(s):  
Krishna P. Acharya ◽  
Alexandre Titov ◽  
Jake Hyvonen ◽  
Chenggong Wang ◽  
Jean Tokarz ◽  
...  

Colloidal quantum dot-polymer hybrid light emitting diodes (QLEDs) that exhibit external quantum efficiencies >12% for all three primary colors (21% from green) have been demonstrated.


Sign in / Sign up

Export Citation Format

Share Document