scholarly journals Identification of Different Proteins Binding to Na, K-ATPase α1 in LPS-Induced ARDS Cell Model by Proteomic Analysis

Author(s):  
Xu-Peng Wen ◽  
Guo Long ◽  
Yue-Zhong Zhang ◽  
He Huang ◽  
Tao-Hua Liu ◽  
...  

Abstract Background: Acute respiratory distress syndrome (ARDS) is characterized by refractory hypoxemia caused by accumulation of pulmonary fluid, which is related to inflammatory cell infiltration, impaired tight junction of pulmonary epithelium and impaired Na, K-ATPase function, especially Na, K-ATPase α1 subunit. Up until now, the pathogenic mechanism at the level of protein during lipopolysaccharide- (LPS-) induced ARDS remains unclear.Methods: Using an unbiased, discovery and quantitative proteomic approach, we discovered the differentially expressed proteins binding to Na, K-ATPase α1 between LPS-A549 cells and Control-A549 cells. These Na, K-ATPase α1 interacting proteins were screened by co-immunoprecipitation (Co-IP) technology. Among them, some of the differentially expressed proteins with significant performance were identified and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The protein interaction network was constructed by the related Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Several differentially expressed proteins were validated by Western blot.Results: Of identified 1598 proteins, 89 were differentially expressed proteins between LPS-A549 cells and Control-A549 cells. Intriguingly, protein-protein interaction network showed that there were 244 significantly enriched co-expression among 60 proteins in the group control-A549. while the group LPS-A549 showed 43 significant enriched interactions among 29 proteins. The related GO and KEGG analysis found evident phenomena of ubiquitination and deubiquitination, as well as the pathways related to autophagy. Among proteins with rich abundance, there were several intriguing ones, including the deubiquitinase (OTUB1), the tight junction protein zonula occludens-1 (ZO-1), the scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complexes (CUL4B) and the autophagy-related protein sequestosome-1 (SQSTM1).Conclusions: In conclusion, our proteomic approach revealed targets related to the occurrence and development of ARDS, being the first study to investigate significant differences in Na, K-ATPase α1 interacting proteins between LPS-induced ARDS cell model and control-A549 cell. These proteins may help the clinical diagnosis and facilitate the personalized treatment of ARDS.

2021 ◽  
Author(s):  
Xu-Peng Wen ◽  
Yue-Zhong Zhang ◽  
He Huang ◽  
Tao-Hua Liu ◽  
Qi-Quan Wan

Abstract Acute respiratory distress syndrome (ARDS) is characterized by refractory hypoxemia caused by accumulation of pulmonary fluid, which is related to inflammatory cell infiltration, impaired tight junction of pulmonary epithelium and impaired Na, K-ATPase function, especially Na, K-ATPase α1 subunit. Up until now, the pathogenic mechanism at the level of protein during lipopolysaccharide- (LPS-) induced ARDS remains unclear. Using an unbiased, discovery and quantitative proteomic approach, the discovery of differentially expressed proteins binding to Na, K-ATPase α1 between LPS-induced A549 cell and control-A549 group is of particular interest for the current study. These proteins may help the clinical diagnosis and facilitate the personalized treatment of ARDS. We screened these Na, K-ATPase α1 interacting proteins, carried out the related Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and found evident phenomena of ubiquitination and deubiquitination, as well as the pathways related to autophagy. We also chose some of the differentiated expressing proteins with significant performance for further verification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among proteins with rich abundance, there were several intriguing ones, including the deubiquitinase (OTUB1), the tight junction protein zonula occludens-1 (ZO-1), the scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complexes (CUL4B) and the autophagy-related protein sequestosome-1 (SQSTM1). Protein-protein interaction network showed that there were 244 significantly enriched co-expression among 60 proteins in the group control-A549. while the group LPS-A549 showed 43 significant enriched interactions among 29 proteins. In conclusion, our quantitative discovery-based proteomic approach identified commonalities, and revealed targets related to the occurrence and development of ARDS, being the first study to investigate significant differences in Na, K-ATPase α1 interacting proteins between LPS-induced ARDS cell model and control-A549 cell.


2017 ◽  
Vol 159 ◽  
pp. 77-91 ◽  
Author(s):  
Jasmine Naru ◽  
Ritu Aggarwal ◽  
Ashok Kumar Mohanty ◽  
Usha Singh ◽  
Deepak Bansal ◽  
...  

2018 ◽  
Vol 85 (2) ◽  
pp. 152-156
Author(s):  
Caihong Wang ◽  
Chong Wang ◽  
Jianxin Liu ◽  
Hongyun Liu

The aim of the research reported in this Research Communication was to identify differentially expressed proteins in dairy cows with normal and lutein diet and to elucidate the mechanisms of lutein-induced effects on bovine mammary gland metabolism using a comparative proteomic approach. Thirty-three differentially expressed proteins were identified from mammary gland of control diet-fed and lutein diet-fed dairy cows. Among these proteins, 15 were upregulated and 18 were downregulated in the lutein group. Functional analysis of the differentially expressed proteins showed that increased blood flow, depressed glycolysis, enhanced lactose anabolism, decreased fatty acid oxidation and up-regulated beta lactoglobulin expression were connected with lutein addition. These results suggested that the increased blood flow, reduced glucose catabolism, enhanced capacity for milk lactose synthesis, depressed fatty acid catabolism and increased expression of antioxidantion related protein may be the prime factors contributing to the increased milk production and enhanced immune status in lutein-fed dairy cows. This study provides molecular mechanism of dietary lutein in regulating lactation of dairy cows.


2019 ◽  
Vol 20 (15) ◽  
pp. 3674 ◽  
Author(s):  
Tang ◽  
Sun ◽  
Chen ◽  
Damaris ◽  
Lu ◽  
...  

Nitrogen (N) is an essential nutrient for plants and a key limiting factor of crop production. However, excessive application of N fertilizers and the low nitrogen use efficiency (NUE) have brought in severe damage to the environment. Therefore, improving NUE is urgent and critical for the reductions of N fertilizer pollution and production cost. In the present study, we investigated the effects of N nutrition on the growth and yield of the two rice (Oryza sativa L.) cultivars, conventional rice Huanghuazhan and indica hybrid rice Quanliangyou 681, which were grown at three levels of N fertilizer (including 135, 180 and 225 kg/hm2, labeled as N9, N12, N15, respectively). Then, a proteomic approach was employed in the roots of the two rice cultivars treated with N fertilizer at the level of N15. A total of 6728 proteins were identified, among which 6093 proteins were quantified, and 511 differentially expressed proteins were found in the two rice cultivars after N fertilizer treatment. These differentially expressed proteins were mainly involved in ammonium assimilation, amino acid metabolism, carbohydrate metabolism, lipid metabolism, signal transduction, energy production/regulation, material transport, and stress/defense response. Together, this study provides new insights into the regulatory mechanism of nitrogen fertilization in cereal crops.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Huai-Dong Hu ◽  
Feng Ye ◽  
Da-Zhi Zhang ◽  
Peng Hu ◽  
Hong Ren ◽  
...  

Multidrug resistance (MDR) is a major obstacle towards a successful treatment of gastric cancer. However, the mechanisms of MDR are intricate and have not been fully understood. To elucidate the molecular mechanisms of MDR in gastric cancer, we employed the proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by LC-MS/MS, using the vincristine-resistant SGC7901/VCR cell line and its parental SGC7901 cell line as a model. In total, 820 unique proteins were identified and 91 proteins showed to be differentially expressed in SGC7901/VCR compared with SGC7901. Several differentially expressed proteins were further validated by western blot analysis. Furthermore, the association of MVP, one of the highly expressed proteins in SGC7901/VCR, with MDR was verified. Our study is the first application of iTRAQ technology for MDR mechanisms analysis in gastric cancer, and many of the differentially expressed proteins identified have not been linked to MDR in gastric cancer before, which showed the value of this technology in identifying differentially expressed proteins in cancer.


2016 ◽  
Vol 311 (3) ◽  
pp. G446-G457 ◽  
Author(s):  
David Padua ◽  
Swapna Mahurkar-Joshi ◽  
Ivy Ka Man Law ◽  
Christos Polytarchou ◽  
John P. Vu ◽  
...  

High-throughput technologies revealed new categories of genes, including the long noncoding RNAs (lncRNAs), involved in the pathogenesis of human disease; however, the role of lncRNAs in the ulcerative colitis (UC) has not been evaluated. Gene expression profiling was used to develop lncRNA signatures in UC samples. Jurkat T cells were activated by PMA/ionomycin subsequently interferon-γ (IFNG) and tumor necrosis factor (TNF)-α protein levels were assessed by ELISA. Anti-sense molecules were designed to block IFNG-AS1 expression. A unique set of lncRNAs was differentially expressed between UC and control samples. Of these, IFNG-AS1 was among the highest statistically significant lncRNAs (fold change: 5.27, P value: 7.07E−06). Bioinformatic analysis showed that IFNG-AS1 was associated with the IBD susceptibility loci SNP rs7134599 and its genomic location is adjacent to the inflammatory cytokine IFNG. In mouse models of colitis, active colitis samples had increased colonic expression of this lncRNA. Utilizing the Jurkat T cell model, we found IFNG-AS1 to positively regulate IFNG expression. Novel lncRNA signatures differentiate UC patients with active disease, patients in remission, and control subjects. A subset of these lncRNAs was found to be associated with the clinically validated IBD susceptibility loci. IFNG-AS1 was one of these differentially expressed lncRNAs in UC patients and found to regulate the key inflammatory cytokine, IFNG, in CD4 T cells. Taking these findings together, our study revealed novel lncRNA signatures deregulated in UC and identified IFNG-AS1 as a novel regulator of IFNG inflammatory responses, suggesting the potential importance of noncoding RNA mechanisms on regulation of inflammatory bowel disease-related inflammatory responses.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 963-963
Author(s):  
Jeremy C. Wallentine ◽  
David K. Crockett ◽  
Kojo S.J. Elenitoba-Johnson ◽  
Megan S. Lim

Abstract Notch signaling has been implicated in the regulation of Hodgkin lymphoma (HL) survival via NF-kappaB. Notch signaling is dependent on the interaction of ligands with the transmembrane notch receptor. Ligand binding triggers proteolytic cleavage of the intracellular notch domain with subsequent translocation to the nucleus and activation of transcription factors. Gamma-secretase which catalyzes the proteolytic cleavage and release of the notch intracellular domain is critical in the mediation of notch signaling. Inhibition of gamma-secretase using 7{N-[N-(3,5-difluorophenyl)-L-alanyl]-s-phenyl-glycine t-butyl ester} (DAPT) in rat fetal thymocytes significantly reduces the expression of notch target genes. We identified proteins released by HL-derived cells into conditioned media including multiple upstream and downstream components of the notch signaling cascade, specifically: notch1, notch2, jagged1, jagged2, HES2, Hes4, GATA2 and GATA5. A proteomic analysis of the differentially expressed proteins among DAPT treated and untreated cells will reveal potential novel downstream mediators of notch signaling, increasing our understanding of HL pathogenesis. We sought to identify the proteomic consequences of notch signaling inhibition in L428 HL cells using a mass spectrometry-based proteomic approach. Treatment of L428 HL cells with DAPT (50μM) resulted in decreased cell proliferation as measured by the MTT assay which was associated with induction of p27Kip1. We utilized an endoproteinase catalyzed O16/O18 differential isotopic strategy to quantitatively determine the global proteomic changes following inhibition of the notch signaling pathway using DAPT. Proteins were collected from the cell lysate of treated and non-treated L428 cells, subjected to O16/O18 labeling and then analyzed by reverse-phase liquid chromatography coupled with electrospray ionization tandem mass spectrometry. A total of 156 proteins with 2 or more unique peptides were identified as being differentially expressed between treated and non-treated L428 cells. Proteins of diverse location and function were identified. Importantly a large number of proteins involved in transcription (12%; RelB, TRRAP, RB-associated protein, NCOR1), and located in the nucleus (27%; H2AO, FUSE binding protein 1, ANC5, SMYD1) were identified. Other important functional categories of the identified proteins included signaling activity (28%), and catalytic activity (41%). Several known proteins regulated by notch and involved with the regulation of notch activity such as (Histone acetyltransferase PCAF, RelB, N-COR1) were identified and found to be under expressed in treated cells. In addition, novel proteins with transcriptional and cell signaling activities have been identified, representing unique pathways that may be directly or indirectly affected by notch signaling. Our study represents the first comprehensive analysis of differentially expressed proteins following the inhibition of notch signaling. These results provide novel insights into our understanding of the pathogenesis and the role of notch signaling in HL


Sign in / Sign up

Export Citation Format

Share Document