scholarly journals Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy

Author(s):  
Junjie Yao ◽  
Xiaoyi Zhu ◽  
Qiang Huang ◽  
Anthony DiSpirito ◽  
Tri Vu ◽  
...  

Abstract High-speed high-resolution imaging of the whole-brain hemodynamics is urgently needed to facilitate the next level of neurovascular research. Image acquisition speed and image quality are crucial to visualizing real-time hemodynamics in complex brain vascular networks, and displaying fast pathophysiological dynamics on a micro and macro-level, enabling advances in current queries in neurovascular and brain metabolism research, including stroke, dementia and acute brain injury. Further, real-time oxygen saturation of hemoglobin (sO2) imaging to differentiate arteries from veins and capture fast-paced oxygen delivery dynamics is needed to solve pertinent questions in these fields and beyond. Here, we present a novel ultrafast functional photoacoustic microscopy (UFF-PAM) to image the whole-brain hemodynamics and oxygen delivery. UFF-PAM takes advantage of several key engineering innovations, including Raman-shifter-based dual-wavelength laser excitation, water-immersible 12-facet-polygon scanner, high-sensitivity ultrasound transducer, and deep-learning-based image upsampling. A volumetric imaging rate of 2 Hz has been achieved over a field of view (FOV) of 11× 7.5 × 1.5 mm3 with a high spatial resolution of ~10 µm. Using the UFF-PAM system, we have demonstrated proof-of-concept functional studies on the mouse brains in response to systemic hypoxia, sodium nitroprusside, and stroke. We observed the mouse brain’s fast morphological and functional changes over the entire cortex, including vasoconstriction, vasodilation, and deoxygenation. More interestingly, for the first time, under the whole-brain FOV and micro-vessel resolution, we captured the vasoconstriction and oxygenation change simultaneously in the spreading depolarization (SD) wave. Our work provides a great potential for fundamental brain research under various pathological and physiological conditions.

Author(s):  
Hyojin Kim ◽  
Jin Young Kim ◽  
Jinwoo Baik ◽  
Seonghee Cho ◽  
Chulhong Kim

2017 ◽  
Vol 11 (3) ◽  
pp. e201700210 ◽  
Author(s):  
Heesung Kang ◽  
Sang-Won Lee ◽  
Sang-Min Park ◽  
Soon-Woo Cho ◽  
Jae Yong Lee ◽  
...  

2020 ◽  
Vol 45 (10) ◽  
pp. 2756 ◽  
Author(s):  
Fenghe Zhong ◽  
Youwei Bao ◽  
Ruimin Chen ◽  
Qifa Zhou ◽  
Song Hu

2016 ◽  
Vol 371 (1705) ◽  
pp. 20150360 ◽  
Author(s):  
Ying Ma ◽  
Mohammed A. Shaik ◽  
Sharon H. Kim ◽  
Mariel G. Kozberg ◽  
David N. Thibodeaux ◽  
...  

Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’.


Sign in / Sign up

Export Citation Format

Share Document