scholarly journals A novel scalable electrode array and system for non-invasively assessing gastric function using flexible electronics

Author(s):  
Armen Gharibans ◽  
Tommy Hayes ◽  
Daniel Carson ◽  
Stefan Calder ◽  
Chris Varghese ◽  
...  

Abstract Disorders of gastric function are highly prevalent, but diagnosis often remains symptom-based and inconclusive. Body surface gastric mapping is an emerging diagnostic solution, but current approaches lack scalability and are cumbersome and clinically impractical. We present a novel scalable system for non-invasively mapping gastric electrophysiology in high-resolution (HR) at the body-surface. The system comprises a custom-designed flexible HR sensor array and portable data-logger synchronized to an App, with automated analysis and visualization algorithms. The novel system underwent performance testing then validation in 24 healthy subjects. In all subjects, gastric electrophysiology and meal responses were successfully captured and mapped non-invasively (mean frequency 2.9 ± 0.3 cycles per minute; peak amplitude at mean 60 m postprandially with return to baseline in <4 h). Spatiotemporal mapping showed regular and consistent wave activity of mean direction 182.7°±73 (74.7% antegrade, 7.8% retrograde, 17.5% indeterminate). The presented system is a new diagnostic tool for assessing gastric function that is scalable, validated, and ready for clinical applications, offering several biomarkers that are new to gastroenterology practice.

1990 ◽  
Vol 29 (04) ◽  
pp. 282-288 ◽  
Author(s):  
A. van Oosterom

AbstractThis paper introduces some levels at which the computer has been incorporated in the research into the basis of electrocardiography. The emphasis lies on the modeling of the heart as an electrical current generator and of the properties of the body as a volume conductor, both playing a major role in the shaping of the electrocardiographic waveforms recorded at the body surface. It is claimed that the Forward-Problem of electrocardiography is no longer a problem. Several source models of cardiac electrical activity are considered, one of which can be directly interpreted in terms of the underlying electrophysiology (the depolarization sequence of the ventricles). The importance of using tailored rather than textbook geometry in inverse procedures is stressed.


Author(s):  
Shirazu I. ◽  
Theophilus. A. Sackey ◽  
Elvis K. Tiburu ◽  
Mensah Y. B. ◽  
Forson A.

The relationship between body height and body weight has been described by using various terms. Notable among them is the body mass index, body surface area, body shape index and body surface index. In clinical setting the first descriptive parameter is the BMI scale, which provides information about whether an individual body weight is proportionate to the body height. Since the development of BMI, two other body parameters have been developed in an attempt to determine the relationship between body height and weight. These are the body surface area (BSA) and body surface index (BSI). Generally, these body parameters are described as clinical health indicators that described how healthy an individual body response to the other internal organs. The aim of the study is to discuss the use of BSI as a better clinical health indicator for preclinical assessment of body-organ/tissue relationship. Hence organ health condition as against other body composition. In addition the study is `also to determine the best body parameter the best predict other parameters for clinical application. The model parameters are presented as; modeled height and weight; modelled BSI and BSA, BSI and BMI and modeled BSA and BMI. The models are presented as clinical application software for comfortable working process and designed as GUI and CAD for use in clinical application.


2021 ◽  
Vol 116 ◽  
pp. 103915
Author(s):  
Chihiro Iiyama ◽  
Fuyu Yoneda ◽  
Masaya Tsutsumi ◽  
Shigeyuki Tsutsui ◽  
Osamu Nakamura

Dermatology ◽  
2021 ◽  
pp. 1-9
Author(s):  
María Luisa Peralta-Pedrero ◽  
Denisse Herrera-Bringas ◽  
Karla Samantha Torres-González ◽  
Martha Alejandra Morales-Sánchez ◽  
Fermín Jurado Santa-Cruz ◽  
...  

<b><i>Background:</i></b> Vitiligo has an unpredictable course and a variable response to treatment. Furthermore, the improvement of some vitiligo lesions cannot be considered a guarantee of a similar response to the other lesions. Instruments for patient-reported outcome measures (PROM) can be an alternative to measure complex constructions such as clinical evolution. <b><i>Objective:</i></b> The aim of this study was to validate a PROM that allows to measure the clinical evolution of patients with nonsegmental vitiligo in a simple but standardized way that serves to gather information for a better understanding of the disease. <b><i>Methods:</i></b> The instrument was created through expert consensus and patient participation. For the validation study, a prospective cohort design was performed. The body surface area affected was measured with the Vitiligo Extension Score (VES), the extension, the stage, and the spread by the evaluation of the Vitiligo European Task Force assessment (VETFa). Reliability was determined with test-retest, construct validity through hypothesis testing, discriminative capacity with extreme groups, and response capacity by comparing initial and final measurements. <b><i>Results:</i></b> Eighteen semi-structured interviews and 7 cognitive interviews were conducted, and 4 dermatologists were consulted. The instrument Clinical Evolution-Vitiligo (CV-6) was answered by 119 patients with a minimum of primary schooling. A wide range was observed in the affected body surface; incident and prevalent cases were included. The average time to answer the CV-6 was 3.08 ± 0.58 min. In the test-retest (<i>n</i> = 53), an intraclass correlation coefficient was obtained: 0.896 (95% CI 0.82–0.94; <i>p</i> &#x3c; 0.001). In extreme groups, the mean score was 2 (2–3) and 5 (4–6); <i>p</i> &#x3c; 0.001. The initial CV-6 score was different from the final one and the change was verified with VES and VETFa (<i>p</i> &#x3c; 0.05, <i>n</i> = 92). <b><i>Conclusions:</i></b> The CV-6 instrument allows patient collaboration, it is simple and brief, and it makes it easier for the doctor to focus attention on injuries that present changes at the time of medical consultation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayukh Nath ◽  
Shovan Maity ◽  
Shitij Avlani ◽  
Scott Weigand ◽  
Shreyas Sen

AbstractRadiative communication using electromagnetic fields is the backbone of today’s wirelessly connected world, which implies that the physical signals are available for malicious interceptors to snoop within a 5–10 m distance, also increasing interference and reducing channel capacity. Recently, Electro-quasistatic Human Body Communication (EQS-HBC) was demonstrated which utilizes the human body’s conductive properties to communicate without radiating the signals outside the body. Previous experiments showed that an attack with an antenna was unsuccessful at a distance more than 1 cm from the body surface and 15 cm from an EQS-HBC device. However, since this is a new communication modality, it calls for an investigation of new attack modalities—that can potentially exploit the physics utilized in EQS-HBC to break the system. In this study, we present a novel attack method for EQS-HBC devices, using the body of the attacker itself as a coupling surface and capacitive inter-body coupling between the user and the attacker. We develop theoretical understanding backed by experimental results for inter-body coupling, as a function of distance between the subjects. We utilize this newly developed understanding to design EQS-HBC transmitters that minimizes the attack distance through inter-body coupling, as well as the interference among multiple EQS-HBC users due to inter-body coupling. This understanding will allow us to develop more secure and robust EQS-HBC based body area networks in the future.


Author(s):  
Yehong Fang ◽  
Shu Han ◽  
Xiaoxue Li ◽  
Yikuan Xie ◽  
Bing Zhu ◽  
...  

Abstract Pain on the body surface can accompany disorders in the deep tissue or internal organs. However, the anatomical and physiological mechanisms are obscure. Here, we provided direct evidence of axon bifurcation in primary C-nociceptive neurons that innervate both the skin and a visceral organ. Double-labeled dorsal root ganglion (DRG) neurons and Evans blue extravasation were observed in 3 types of chemically-induced visceral inflammation (colitis, urocystitis, and acute gastritis) rat models. In the colitis model, mechanical hypersensitivity and spontaneous activity were recorded in vivo from double-labeled C-nociceptive neurons in S1 or L6 DRGs. These neurons showed significantly enhanced responses to both somatic stimulation and colorectal distension. Our findings suggest that the branching of C-nociceptor axons contribute to cutaneous hypersensitivity in visceral inflammation. Cutaneous hypersensitivity on certain locations of the body surface might serve as an indicator of pathological conditions in the corresponding visceral organ.


2014 ◽  
Vol 554 ◽  
pp. 717-723
Author(s):  
Reza Abbasabadi Hassanzadeh ◽  
Shahab Shariatmadari ◽  
Ali Chegeni ◽  
Seyed Alireza Ghazanfari ◽  
Mahdi Nakisa

The present study aims to investigate the optimized profile of the body through minimizing the Drag coefficient in certain Reynolds regime. For this purpose, effective aerodynamic computations are required to find the Drag coefficient. Then, the computations should be coupled thorough an optimization process to obtain the optimized profile. The aerodynamic computations include calculating the surrounding potential flow field of an object, calculating the laminar and turbulent boundary layer close to the object, and calculating the Drag coefficient of the object’s body surface. To optimize the profile, indirect methods are used to calculate the potential flow since the object profile is initially amorphous. In addition to the indirect methods, the present study has also used axial singularity method which is more precise and efficient compared to other methods. In this method, the body profile is not optimized directly. Instead, a sink-and-source singularity distribution is used on the axis to model the body profile and calculate the relevant viscose flow field.


Sign in / Sign up

Export Citation Format

Share Document