scholarly journals Deletion of YLR358C Contributes to Reduce Cell Wall Integrity in Saccharomyces Cerevisiae

Author(s):  
Yu Zhang ◽  
Mengyan Li ◽  
Hanying Wang ◽  
Juqing Deng ◽  
Jianxing Liu ◽  
...  

Abstract The mechanism of fungal cell wall synthesis and assembly is still unclear. Saccharomyces cerevisiae (S. cerevisiae) and pathogenic fungi are conserved in cell wall construction and response to stress signals, and often respond to cell wall stress through activated cell wall integrity (CWI) pathways. Whether the YLR358C open reading frame regulates CWI remains unclear. This study found that the growth of S. cerevisiae with YLR358C knockout was significantly inhibited on the medium containing different concentrations of cell wall interfering agents Calcofluor White (CFW), Congo Red (CR) and sodium dodecyl sulfate (SDS). CFW staining showed that the cell wall chitin was down-regulated, and transmission electron microscopy also observed a decrease in cell wall thickness. Transcriptome sequencing and analysis showed that YLR358C gene may be involved in the regulation of CWI signaling pathway. It was found by qRT-PCR that WSC3, SWI4 and HSP12 were differentially expressed after YLR358C was knocked out. The above results suggest that YLR358C may regulate the integrity of the yeast cell walls and has some potential for application in fermentation.

1999 ◽  
Vol 181 (11) ◽  
pp. 3330-3340 ◽  
Author(s):  
Troy Ketela ◽  
Robin Green ◽  
Howard Bussey

ABSTRACT The MID2 gene of Saccharomyces cerevisiaeencodes a protein with structural features indicative of a plasma membrane-associated cell wall sensor. MID2 was isolated as a multicopy activator of the Skn7p transcription factor. Deletion ofMID2 causes resistance to calcofluor white, diminished production of stress-induced cell wall chitin under a variety of conditions, and changes in growth rate and viability in a number of different cell wall biosynthesis mutants. Overexpression ofMID2 causes hyperaccumulation of chitin and increased sensitivity to calcofluor white. α-Factor hypersensitivity ofmid2Δ mutants can be suppressed by overexpression of upstream elements of the cell integrity pathway, includingPKC1, RHO1, WSC1, andWSC2. Mid2p and Wsc1p appear to have overlapping roles in maintaining cell integrity since mid2Δ wsc1Δ mutants are inviable on medium that does not contain osmotic support. A role for MID2 in the cell integrity pathway is further supported by the finding that MID2 is required for induction of Mpk1p tyrosine phosphorylation during exposure to α-factor, calcofluor white, or high temperature. Our data are consistent with a role for Mid2p in sensing cell wall stress and in activation of a response that includes both increased chitin synthesis and the Mpk1p mitogen-activated protein kinase cell integrity pathway. In addition, we have identified an open reading frame, MTL1, which encodes a protein with both structural and functional similarity to Mid2p.


2001 ◽  
Vol 183 (23) ◽  
pp. 6740-6745 ◽  
Author(s):  
Theodore J. Kottom ◽  
Charles F. Thomas ◽  
Andrew H. Limper

ABSTRACT Pneumocystis carinii remains an important opportunistic fungal pathogen causing life-threatening pneumonia in patients with AIDS and malignancy. Currently, little is known about how the organism adapts to environmental stresses and maintains its cellular integrity. We recently discovered an open reading frame approximately 600 bp downstream of the region codingGSC-1, a gene mediating β-glucan cell wall synthesis in P. carinii. The predicted amino acid sequence of this new gene, termed P. carinii PHR1, exhibited 38% homology to Saccharomyces cerevisiae GAS1, a glycosylphosphatidylinositol-anchored protein essential to maintaining cell wall integrity, and 37% homology to Candida albicans PHR1/PHR2, pH-responsive genes encoding proteins recently implicated in cross-linking β-1,3- and β-1,6-glucans. In view of its homology to these related fungal genes, the pH-dependent expression of P. carinii PHR1 was examined. As in C. albicans, P. carinii PHR1 expression was repressed under acidic conditions but induced at neutral and more alkaline pH. PHR1-related proteins have been implicated in glucan cell wall stability under various environmental conditions. Although difficulties with P. carinii culture and transformation have traditionally limited assessment of gene function in the organism itself, we have successfully used heterologous expression of P. carinii genes in related fungi to address functional correlates of P. carinii-encoded proteins. Therefore, the potential role of P. carinii PHR1 in cell wall integrity was examined by assessing its ability to rescue an S. cerevisiae gas1 mutant with absent endogenous Phr1p-like activity. Interestingly, P. carinii PHR1 DNA successfully restored proliferation of S. cerevisiae gas1 mutants under lethal conditions of cell wall stress. These results indicate that P. carinii PHR1encodes a protein responsive to environmental pH and capable of mediating fungal cell wall integrity.


2013 ◽  
Vol 58 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Awanish Kumar ◽  
Sanjiveeni Dhamgaye ◽  
Indresh Kumar Maurya ◽  
Ashutosh Singh ◽  
Monika Sharma ◽  
...  

ABSTRACTCurcumin (CUR) shows antifungal activity against a range of pathogenic fungi, includingCandida albicans. The reported mechanisms of action of CUR include reactive oxygen species (ROS) generation, defects in the ergosterol biosynthesis pathway, decrease in hyphal development, and modulation of multidrug efflux pumps. Reportedly, each of these pathways is independently linked to the cell wall machinery inC. albicans, but surprisingly, CUR has not been previously implicated in cell wall damage. In the present study, we performed transcriptional profiling to identify the yet-unidentified targets of CUR inC. albicans. We found that, among 348 CUR-affected genes, 51 were upregulated and 297 were downregulated. Interestingly, most of the cell wall integrity pathway genes were downregulated. The possibility of the cell wall playing a critical role in the mechanism of CUR required further validation; therefore, we performed specific experiments to establish if there was any link between the two. The fractional inhibitory concentration index values of 0.24 to 0.37 show that CUR interacts synergistically with cell wall-perturbing (CWP) agents (caspofungin, calcofluor white, Congo red, and SDS). Furthermore, we could observe cell wall damage and membrane permeabilization by CUR alone, as well as synergistically with CWP agents. We also found hypersusceptibility in calcineurin and mitogen-activated protein (MAP) kinase pathway mutants against CUR, which confirmed that CUR also targets cell wall biosynthesis inC. albicans. Together, these data provide strong evidence that CUR disrupts cell wall integrity inC. albicans. This new information on the mechanistic action of CUR could be employed in improving treatment strategies and in combinatorial drug therapy.


2020 ◽  
Vol 21 (3) ◽  
pp. 265-283 ◽  
Author(s):  
João Henrique T.M. Fabri ◽  
Marina C. Rocha ◽  
Iran Malavazi

:The cell wall (CW) and plasma membrane are fundamental structures that define cell shape and support different cellular functions. In pathogenic fungi, such as Aspegillus fumigatus, they not only play structural roles but are also important for virulence and immune recognition. Both the CW and the plasma membrane remain as attractive drug targets to treat fungal infections, such as the Invasive Pulmonary Aspergillosis (IPA), a disease associated with high morbimortality in immunocompromised individuals. The low efficiency of echinocandins that target the fungal CW biosynthesis, the occurrence of environmental isolates resistant to azoles such as voriconazole and the known drawbacks associated with amphotericin toxicity foster the urgent need for fungal-specific drugable targets and/or more efficient combinatorial therapeutic strategies. Reverse genetic approaches in fungi unveil that perturbations of the CW also render cells with increased susceptibility to membrane disrupting agents and vice-versa. However, how the fungal cells simultaneously cope with perturbation in CW polysaccharides and cell membrane proteins to allow morphogenesis is scarcely known. Here, we focus on current information on how the main signaling pathways that maintain fungal cell wall integrity, such as the Cell Wall Integrity and the High Osmolarity Glycerol pathways, in different species often cross-talk to regulate the synthesis of molecules that comprise the plasma membrane, especially sphingolipids, ergosterol and phospholipids to promote functioning of both structures concomitantly and thus, cell viability. We propose that the conclusions drawn from other organisms are the foundations to point out experimental lines that can be endeavored in A. fumigatus.


2006 ◽  
Vol 5 (2) ◽  
pp. 313-320 ◽  
Author(s):  
Matthew G. Slattery ◽  
Dritan Liko ◽  
Warren Heideman

ABSTRACT Azf1 activates CLN3 transcription in Saccharomyces cerevisiae cells growing in glucose. Paradoxically, other studies have shown Azf1 to be almost undetectable in glucose-grown cells. Microarray experiments showed that Azf1 activates nonoverlapping gene sets in different carbon sources: in glucose, Azf1 activates carbon and energy metabolism genes, and in glycerol-lactate, Azf1 activates genes needed for cell wall maintenance. Consistent with the decreased expression of cell wall maintenance genes observed with azf1Δ mutants, we observed a marked growth defect in the azf1Δ cells at 37°C in nonfermentable medium. Cell wall integrity assays, such as sensitivity to calcofluor white, sodium dodecyl sulfate, or caffeine, confirmed cell wall defects in azf1Δ mutants in nonfermentable medium. Gel shift experiments show that Azf1 binds to DNA elements with the sequence AAAAGAAA (A4GA3), a motif enriched in the promoters of Azf1-sensitive genes and predicted by whole-genome studies. This suggests that many of the Azf1-dependent transcripts may be regulated directly by Azf1 binding. We found that the levels of Azf1 protein in glucose-grown cells were comparable to Azf1 levels in cells grown in glycerol-lactate; however, this could only be demonstrated with a cell extraction procedure that minimizes proteolysis. Glucose produces conditions that destabilize the Azf1 protein, a finding that may reflect a glucose-induced change in Azf1 tertiary or quaternary structure.


2021 ◽  
Vol 7 (10) ◽  
pp. 831
Author(s):  
Haroldo Cesar de Oliveira ◽  
Suelen Andreia Rossi ◽  
Irene García-Barbazán ◽  
Óscar Zaragoza ◽  
Nuria Trevijano-Contador

Due to its location, the fungal cell wall is the compartment that allows the interaction with the environment and/or the host, playing an important role during infection as well as in different biological functions such as cell morphology, cell permeability and protection against stress. All these processes involve the activation of signaling pathways within the cell. The cell wall integrity (CWI) pathway is the main route responsible for maintaining the functionality and proper structure of the cell wall. This pathway is highly conserved in the fungal kingdom and has been extensively characterized in Saccharomyces cerevisiae. However, there are still many unknown aspects of this pathway in the pathogenic fungi, such as Cryptococcus neoformans. This yeast is of particular interest because it is found in the environment, but can also behave as pathogen in multiple organisms, including vertebrates and invertebrates, so it has to adapt to multiple factors to survive in multiple niches. In this review, we summarize the components of the CWI pathway in C. neoformans as well as its involvement in different aspects such as virulence factors, morphological changes, and its role as target for antifungal therapies among others.


2021 ◽  
Vol 17 (1) ◽  
pp. e1009080
Author(s):  
Wanzhen Feng ◽  
Ziyi Yin ◽  
Haowen Wu ◽  
Peng Liu ◽  
Xinyu Liu ◽  
...  

The fungal cell wall plays an essential role in maintaining cell morphology, transmitting external signals, controlling cell growth, and even virulence. Relaxation and irreversible stretching of the cell wall are the prerequisites of cell division and development, but they also inevitably cause cell wall stress. Both Mitotic Exit Network (MEN) and Cell Wall Integrity (CWI) are signaling pathways that govern cell division and cell stress response, respectively, how these pathways cross talk to govern and coordinate cellular growth, development, and pathogenicity remains not fully understood. We have identified MoSep1, MoDbf2, and MoMob1 as the conserved components of MEN from the rice blast fungus Magnaporthe oryzae. We have found that blocking cell division results in abnormal CWI signaling. In addition, we discovered that MoSep1 targets MoMkk1, a conserved key MAP kinase of the CWI pathway, through protein phosphorylation that promotes CWI signaling. Moreover, we provided evidence demonstrating that MoSep1-dependent MoMkk1 phosphorylation is essential for balancing cell division with CWI that maintains the dynamic stability required for virulence of the blast fungus.


2018 ◽  
Author(s):  
Lea Schroeder ◽  
Pauletta Lazarevskiy ◽  
Amy E. Ikui

AbstractSodium dodecyl sulfate is a detergent that disrupts cell membranes, activates cell wall integrity signaling and restricts cell growth inSaccharomyces cerevisiae. However, the underlying mechanism of how sodium dodecyl sulfate inhibits cell growth is not fully understood. Because deletion of theMCK1gene leads to sensitivity to sodium dodecyl sulfate, we implemented a suppressor gene screening revealing that theTAT2tryptophan permease rescues cell growth to sodium dodecyl sulfate-treatedΔmck1cells. Therefore, we questioned the involvement of tryptophan in the response to sodium dodecyl sulfate treatment. In this work, we show thatΔtrp1cells have a disadvantage in the response to sodium dodecyl sulfate compared to auxotrophy for adenine, histidine, leucine or uracil. While also critical in the response to tea tree oil,TRP1does not avert growth inhibition due to other cell wall/membrane perturbations that activate cell wall integrity signaling such as calcofluor white, Congo Red or heat stress. This implicates a distinction from the cell wall integrity pathway and suggests specificity to membrane stress as opposed to cell wall stress. We discover that tyrosine biosynthesis is also essential upon sodium dodecyl sulfate perturbation whereas phenylalanine biosynthesis appears dispensable. Finally, we observe enhanced tryptophan import within minutes upon exposure to sodium dodecyl sulfate indicating that these cells are not starved for tryptophan. In summary, our results expose a functional link between internal tryptophan levels and tryptophan biosynthesis in the response to plasma membrane damage.


2020 ◽  
Vol 10 (9) ◽  
pp. 3121-3135
Author(s):  
Vladimir Vélez-Segarra ◽  
Sahily González-Crespo ◽  
Ednalise Santiago-Cartagena ◽  
Luis E Vázquez-Quiñones ◽  
Nelson Martínez-Matías ◽  
...  

Abstract Antifungal drug discovery and design is very challenging because of the considerable similarities in genetic features and metabolic pathways between fungi and humans. However, cell wall composition represents a notable point of divergence. Therefore, a research strategy was designed to improve our understanding of the mechanisms for maintaining fungal cell wall integrity, and to identify potential targets for new drugs that modulate the underlying protein-protein interactions in Saccharomyces cerevisiae. This study defines roles for Wsc2p and Wsc3p and their interacting protein partners in the cell wall integrity signaling and cell survival mechanisms that respond to treatments with fluconazole and hydrogen peroxide. By combined genetic and biochemical approaches, we report the discovery of 12 novel protein interactors of Wsc2p and Wsc3p. Of these, Wsc2p interacting partners Gtt1p and Yck2p, have opposing roles in the resistance and sensitivity to fluconazole treatments respectively. The interaction of Wsc2p with Ras2p was confirmed by iMYTH and IP-MS approaches and is shown to play a dominant role in response to oxidative stress induced by hydrogen peroxide. Consistent with an earlier study, Ras2p was also identified as an interacting partner of Wsc1p and Mid2p cell wall integrity signaling proteins. Collectively, this study expands the interaction networks of the mechanosensory proteins of the Cell Wall Integrity pathway.


1999 ◽  
Vol 181 (10) ◽  
pp. 3076-3086 ◽  
Author(s):  
Vladimir Mrsa ◽  
Margit Ecker ◽  
Sabine Strahl-Bolsinger ◽  
Manfred Nimtz ◽  
Ludwig Lehle ◽  
...  

ABSTRACT The incorporation of radioactive orthophosphate into the cell walls of Saccharomyces cerevisiae was studied.33P-labeled cell walls were extensively extracted with hot sodium dodecyl sulfate (SDS). Of the remaining insoluble radioactivity more than 90% could be released by laminarinase. This radioactive material stayed in the stacking gel during SDS-polyacrylamide gel electrophoresis but entered the separating gel upon treatment with N -glycosidase F, indicating that phosphate was linked directly or indirectly to N-mannosylated glycoproteins. The phosphate was bound to covalently linked cell wall proteins as mannose-6-phosphate, the same type of linkage shown previously for soluble mannoproteins (L. Ballou, L. M. Hernandez, E. Alvarado, and C. E. Ballou, Proc. Natl. Acad. Sci. USA 87:3368–3372, 1990). From the phosphate-labeled glycoprotein fraction released by laminarinase, three cell wall mannoproteins, Ccw12p, Ccw13p and Ccw14p, were isolated and identified by N-terminal sequencing. For Ccw13p (encoded by DAN1 [also called TIR3]) and Ccw12p the association with the cell wall has not been described before; Ccw14p is identical with cell wall protein Icwp (I. Moukadiri, J. Armero, A. Abad, R. Sentandreu, and J. Zueco, J. Bacteriol. 179:2154–2162, 1997). In ccw12, ccw13, orccw14 single or double mutants neither the amount of radioactive phosphate incorporated into cell wall proteins nor its position in the stacking gel was changed. However, the triple mutant brought about a shift of the 33P-labeled glycoprotein components from the stacking gel into the separating gel. The disruption of CCW12 results in a pronounced sensitivity of the cells to calcofluor white and Congo red. In addition, theccw12 mutant shows a decrease in mating efficiency and a defect in agglutination.


Sign in / Sign up

Export Citation Format

Share Document