scholarly journals Ghrline Promot the Ovarian Cancer Cell Autophagy by LncRNA linc00598

Author(s):  
Ruixia Bai ◽  
Wanying Song ◽  
Yan Cui ◽  
Haining Gao ◽  
Yuxing Zhao ◽  
...  

Abstract ObjectiveTo explore the autophagy effect of ghrelin on the ovarian cancer cell line SK-OV-3. And the lncRNA which regulate the ghrelin effect SK-OV-3 autophagy was showed.Methodsthe expression of ghrelin in the ovarian cancer tissues was analyzed according GEPIA database and HPA database. The CCK-8 was used to detect the the optimal concentration of ghrelin effect on the SK-OV-3. The influence on the SK-OV-3 cell autophagy by ghrelin was showed by detecting the expression of Beclin-1, LC3Ⅰand LC3Ⅱusing western blot. Linc00598 selected as the effecting the SK-OV-3 cells autophagy by ghrelin using RNA-Seq. And the Linc00598 which was silenced or overexressed promote the SK-OV-3 cells autophagy treated by ghrelin though western blot.ResultsGhrelin was expressed low in the ovarian cancer tissues. Ghrelin concentratio of 600 ng/ml was the optimal concentration o and 24 h was the optimal time. Ghrelin can promote the SK-OV-3 cell autophagy. Ghrelin mainly through linc00598 to promote the SK-OV-3 cells autophagy. When the linc00598 silenced, ghrelin promote SK-OV-3 cells autophagy was inhibited. And When the linc00598 overexpressed, ghrelin promote SK-OV-3 cells autophagy was inhanced.ConclusionsGhrelin promote SK-OV-3 cells autophagy. Additionally, we proved that ghrelin regulated the progression of SK-OV-3 cells autophagy by linc00598/ Beclin1 axis.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Radosław Januchowski ◽  
Piotr Zawierucha ◽  
Marcin Ruciński ◽  
Michał Nowicki ◽  
Maciej Zabel

Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly—over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.


Oncogene ◽  
2006 ◽  
Vol 25 (25) ◽  
pp. 3547-3556 ◽  
Author(s):  
H Linghu ◽  
M Tsuda ◽  
Y Makino ◽  
M Sakai ◽  
T Watanabe ◽  
...  

2003 ◽  
Vol 309 (2) ◽  
pp. 377-383 ◽  
Author(s):  
Yolande Pengetnze ◽  
Mary Steed ◽  
Katherine F. Roby ◽  
Paul F. Terranova ◽  
Christopher C. Taylor

2011 ◽  
Vol 363 (1-2) ◽  
pp. 257-268 ◽  
Author(s):  
Lijuan Wang ◽  
Roman Mezencev ◽  
Nathan J. Bowen ◽  
Lilya V. Matyunina ◽  
John F. McDonald

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lixu Jin ◽  
Yuling Chen ◽  
Xinlin Mu ◽  
Qingquan Lian ◽  
Haiyun Deng ◽  
...  

Ovarian cancer is a major cause for death of gynecological cancer patients. The efficacy of traditional surgery and chemotherapy is rather compromised and platinum-resistant cancer recurs. Finding new therapeutic targets is urgently needed to increase the survival rate and to improve life quality of patients with ovarian cancer. In the present work, phosphoproteomic analysis was carried out on untreated and gossypol-treated ovarian cancer cell line, HOC1a. We identified approximately 9750 phosphopeptides from 3030 phosphoproteins, which are involved in diverse cellular processes including cytoskeletal organization, RNA and nucleotide binding, and cell cycle regulation. Upon gossypol treatment, changes in phosphorylation of twenty-nine proteins including YAP1 and AKAP12 were characterized. Western blotting and qPCR analysis were used to determine expression levels of proteins in YAP1-related Hippo pathway showing that gossypol induced upregulation of LATS1, which phosphorylates YAP1 at Ser 61. Furthermore, our data showed that gossypol targets the actin cytoskeletal organization through mediating phosphorylation states of actin-binding proteins. Taken together, our data provide valuable information to understand effects of gossypol on protein phosphorylation and apoptosis of ovarian cancer cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jing-Quan Wang ◽  
Zhuo-Xun Wu ◽  
Yuqi Yang ◽  
Jin-Sui Li ◽  
Dong-Hua Yang ◽  
...  

Ovarian cancer is one of the leading female malignancies which accounts for the highest mortality rate among gynecologic cancers. Surgical cytoreduction followed by chemotherapy is the mainstay of treatment. However, patients with recurrent ovarian cancer are likely to exhibit resistance to chemotherapy due to reduced sensitivity to chemotherapeutic drugs. Adenosine triphosphate (ATP)-binding cassette (ABC) transporters have been extensively studied as multidrug resistance (MDR) mediators since they are responsible for the efflux of various anticancer drugs. Multidrug resistance protein 7 (MRP7, or ABCC10) was discovered in 2001 and revealed to transport chemotherapeutic drugs. Till now, only limited knowledge was obtained regarding its roles in ovarian cancer. In this study, we established an MRP7-overexpressing ovarian cancer cell line SKOV3/MRP7 via transfecting recombinant MRP7 plasmids. The SKOV3/MRP7 cell line was resistant to multiple anticancer drugs including paclitaxel, docetaxel, vincristine and vinorelbine with a maximum of 8-fold resistance. Biological function of MRP7 protein was further determined by efflux-accumulation assays. Additionally, MTT results showed that the drug resistance of the SKOV3/MRP7 cells was reversed by cepharanthine, a known inhibitor of MRP7. Moreover, we also found that the overexpression of MRP7 enhanced the migration and epithelial-mesenchymal transition (EMT) induction. In conclusion, we established an in vitro model of MDR in ovarian cancer and suggested MRP7 overexpression as the leading mechanism of chemoresistance in this cell line. Our results demonstrated the potential relationship between MRP7 and ovarian cancer MDR.


Sign in / Sign up

Export Citation Format

Share Document