scholarly journals Family Legacy: Depicting Diversity-Elevation Relationships of Tropical Tree Communities

Author(s):  
Vitor de Andrade Kamimura ◽  
Gabriel Mendes Marcusso ◽  
Gabriel Pavan Sabino ◽  
Marco Antonio Assis ◽  
Carlos Alfredo Joly ◽  
...  

Abstract Unveiling the ecological processes driving diversity and its relationship to the environment remains a central goal in ecological studies. Here, we investigated the elevation effect on plant diversity patterns of tropical rainforests, using beta-, phylogenetic and alpha diversities. To do so, we compiled a forest dataset with 22,236 trees (DBH ≥ 4.8 cm) from 17 plots of 1 ha each along an elevational gradient (0 – 1,200 m a.s.l) in the Atlantic Forest of Southeastern Brazil. We found high phylogenetic and species rates of turnover – beta-diversity - along the elevational gradient. Alpha phylodiversity showed a monotonic decrease with increasing elevation, including or not fern species (a distantly related clade usually ignored in tropical ecology studies), while the phylogenetic structure was highly affected by the inclusion of fern trees. Species diversity showed a unimodal pattern for the whole community, and different patterns for the richest families. The diversity pattern of the whole community emerges from differences among species distribution of the richest families, while phylogenetic diversity seems to be gradually filtered by elevation. At intermediate elevations, higher species diversification within families might have led to different strategies and cooccurrence in tropical rainforests. We also showed that intricate effects of elevation in species assemblages can be better assessed using both ecological and evolutionary approaches, stressing the importance of species selection in diversity analyzes. Finally, we demonstrate that elevation has different effects on the species distributions of the richest families and warn that these differences should be considered in conservation planning.

2009 ◽  
Vol 69 (3) ◽  
pp. 843-849 ◽  
Author(s):  
IA. Silva ◽  
MA. Batalha

Ecological communities are the result of not only present ecological processes, such as competition among species and environmental filtering, but also past and continuing evolutionary processes. Based on these assumptions, we may infer mechanisms of contemporary coexistence from the phylogenetic relationships of the species in a community. We studied the phylogenetic structure of plant communities in four cerrado sites, in southeastern Brazil. We calculated two raw phylogenetic distances among the species sampled. We estimated the phylogenetic structure by comparing the observed phylogenetic distances to the distribution of phylogenetic distances in null communities. We obtained null communities by randomizing the phylogenetic relationships of the regional pool of species. We found a phylogenetic overdispersion of the cerrado species. Phylogenetic overdispersion has several explanations, depending on the phylogenetic history of traits and contemporary ecological interactions. However, based on coexistence models between grasses and trees, density-dependent ecological forces, and the evolutionary history of the cerrado flora, we argue that the phylogenetic overdispersion of cerrado species is predominantly due to competitive interactions, herbivores and pathogen attacks, and ecological speciation. Future studies will need to include information on the phylogenetic history of plant traits.


2019 ◽  
Vol 190 (4) ◽  
pp. 333-344 ◽  
Author(s):  
Hong Qian ◽  
Brody Sandel ◽  
Tao Deng ◽  
Ole R Vetaas

AbstractEcologists have embraced phylogenetic measures of assemblage structure, in large part for the promise of better mechanistic inferences. However, phylogenetic structure is driven by a wide array of factors from local biotic interactions to biogeographical history, complicating the mechanistic interpretation of a pattern. This may be particularly problematic along elevational gradients, where rapidly changing physical and biological conditions overlap with geological and biogeographical history, potentially producing complex patterns of phylogenetic dispersion (relatedness). We focus on the longest elevational gradient of vegetation in the world (i.e. c. 6000 m in Nepal) to explore patterns of phylogenetic dispersion for angiosperms (flowering plants) along this elevational gradient. We used the net relatedness index to quantify phylogenetic dispersion for each elevational band of 100 m. We found a zig-zag pattern of phylogenetic dispersion along this elevational gradient. With increasing elevation, the phylogenetic relatedness of species decreased for the elevational segment between 0 and c. 2100 m, increased for the elevational segment between 2100 and c. 4200 m, and decreased for the elevational segment above c. 4200 m. We consider this pattern to be a result of the interaction of geophysical (e.g. plate tectonics) and eco-evolutionary processes (e.g. niche conservatism and trait convergence). We speculate on the mechanisms that might have generated this zig-zag pattern of phylogenetic dispersion.


Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 326
Author(s):  
Samantha J. Worthy ◽  
Rosa A. Jiménez Paz ◽  
Álvaro J. Pérez ◽  
Alex Reynolds ◽  
Jennifer Cruse-Sanders ◽  
...  

Highlighting patterns of distribution and assembly of plants involves the use of community phylogenetic analyses and complementary traditional taxonomic metrics. However, these patterns are often unknown or in dispute, particularly along elevational gradients, with studies finding different patterns based on elevation. We investigated how patterns of tree diversity and structure change along an elevation gradient using taxonomic and phylogenetic diversity metrics. We sampled 595 individuals (36 families; 53 genera; 88 species) across 15 plots along an elevational gradient (2440–3330 m) in Ecuador. Seventy species were sequenced for the rbcL and matK gene regions to generate a phylogeny. Species richness, Shannon–Weaver diversity, Simpson’s Dominance, Simpson’s Evenness, phylogenetic diversity (PD), mean pairwise distance (MPD), and mean nearest taxon distance (MNTD) were evaluated for each plot. Values were correlated with elevation and standardized effect sizes (SES) of MPD and MNTD were generated, including and excluding tree fern species, for comparisons across elevation. Taxonomic and phylogenetic metrics found that species diversity decreases with elevation. We also found that overall the community has a non-random phylogenetic structure, dependent on the presence of tree ferns, with stronger phylogenetic clustering at high elevations. Combined, this evidence supports the ideas that tree ferns have converged with angiosperms to occupy the same habitat and that an increased filtering of clades has led to more closely related angiosperm species at higher elevations.


2021 ◽  
Vol 7 (8) ◽  
pp. 587
Author(s):  
Danielle Hamae Yamauchi ◽  
Hans Garcia Garces ◽  
Marcus de Melo Teixeira ◽  
Gabriel Fellipe Barros Rodrigues ◽  
Leila Sabrina Ullmann ◽  
...  

Soil is the principal habitat and reservoir of fungi that act on ecological processes vital for life on Earth. Understanding soil fungal community structures and the patterns of species distribution is crucial, considering climatic change and the increasing anthropic impacts affecting nature. We evaluated the soil fungal diversity in southeastern Brazil, in a transitional region that harbors patches of distinct biomes and ecoregions. The samples originated from eight habitats, namely: semi-deciduous forest, Brazilian savanna, pasture, coffee and sugarcane plantation, abandoned buildings, owls’ and armadillos’ burrows. Forty-four soil samples collected in two periods were evaluated by metagenomic approaches, focusing on the high-throughput DNA sequencing of the ITS2 rDNA region in the Illumina platform. Normalized difference vegetation index (NDVI) was used for vegetation cover analysis. NDVI values showed a linear relationship with both diversity and richness, reinforcing the importance of a healthy vegetation for the establishment of a diverse and complex fungal community. The owls’ burrows presented a peculiar fungal composition, including high rates of Onygenales, commonly associated with keratinous animal wastes, and Trichosporonales, a group of basidiomycetous yeasts. Levels of organic matter and copper influenced all guild communities analyzed, supporting them as important drivers in shaping the fungal communities’ structures.


2021 ◽  
Vol 13 (6) ◽  
pp. 3439
Author(s):  
Diana Turrión ◽  
Luna Morcillo ◽  
José Antonio Alloza ◽  
Alberto Vilagrosa

Open-pit mining results in profound modifications at different environmental scales that may persist for very long time periods, or even indefinitely. Considerable research efforts in mine reclamation strategies have been made, although reclamation failures are still common. In dry climates, such as in the Mediterranean Basin, successful actions may depend on features related to proper species selection and restoration techniques, which may substantially contribute to provide substrate stability and facilitate the regeneration of the main ecological processes. In this context, we developed the TECMINE case-study aimed to evaluate the feasibility and suitability of innovative restoration practices applied to clay-mine reclamation under Mediterranean conditions. The restoration strategy was designed at the landscape level with two main approaches: the recovery of natural geomorphology shapes and ecological restoration, including vegetation recovery and soil quality, based on proper reference ecosystems. After the geomorphological land remodeling, a combination of several innovative restoration techniques was implemented to reclaim plant communities and ecosystem functioning. These techniques involved: (i) accurate species selection according to microhabitat characteristics; (ii) high-quality plant production; (iii) surface remodeling to improve substrate stabilization; and (iv) implementing rainfall collection to enhance resources availability, soil fertility improvement and the amelioration of abiotic conditions for seedlings. Finally, we developed a monitoring program to assess the success of the implemented restoration techniques over time. The application of these innovative techniques has reported interesting results and represents a step forward in the improvement of mine restoration under Mediterranean climate.


2015 ◽  
Vol 75 (4 suppl 1) ◽  
pp. 97-107 ◽  
Author(s):  
E. G. P. Favaro ◽  
L. H. Sipaúba-Tavares ◽  
A. Milstein

Abstract In Southeastern Brazil tilapia culture is conducted in extensive and semi-intensive flow-through earthen ponds, being water availability and flow management different in the rainy and dry seasons. In this region lettuce wastes are a potential cheap input for tilapia culture. This study examined the ecological processes developing during the rainy and dry seasons in three extensive flow-through earthen tilapia ponds fertilized with lettuce wastes. Water quality, plankton and sediment parameters were sampled monthly during a year. Factor analysis was used to identify the ecological processes occurring within the ponds and to construct a conceptual graphic model of the pond ecosystem functioning during the rainy and dry seasons. Processes related to nitrogen cycling presented differences between both seasons while processes related to phosphorus cycling did not. Ecological differences among ponds were due to effects of wind protection by surrounding vegetation, organic loading entering, tilapia density and its grazing pressure on zooplankton. Differences in tilapia growth among ponds were related to stocking density and ecological process affecting tilapia food availability and intraspecific competition. Lettuce wastes addition into the ponds did not produce negative effects, thus this practice may be considered a disposal option and a low-cost input source for tilapia, at least at the amounts applied in this study.


2018 ◽  
Vol 20 (1) ◽  
pp. 129 ◽  
Author(s):  
Eduardo De Rodrigues Coelho ◽  
Adriano Pereira Paglia ◽  
Arleu Barbosa Viana-Junior ◽  
Luiz A. Dolabela Falcão ◽  
Guilherme B. Ferreira

Parasitology ◽  
2020 ◽  
pp. 1-11
Author(s):  
Ivan Baláž ◽  
Michal Ševčík ◽  
Filip Tulis ◽  
Martina Zigová ◽  
Alexander Dudich

Abstract The causal chain of parasite–host–environment interactions, the so-called ‘dual parasite environment’, makes studying parasites more complicated than other wild organisms. A sample of 65 282 fleas taken from 336 different locations were analysed for changes in the distribution, diversity and compensation of flea communities found on small mammals along an elevational diversity gradient ranging from the Pannonian Plain to the base of the Carpathian summits. The fleas were divided into four groups, which were derived from changes in abundance and occurrence determined from cluster analysis. They are (1) flea species whose range seems unrelated to any change in elevation; (2) species that avoid high altitudes; (3) a group that can be subdivided into two types: (i) host-specific fleas and (ii) mountains species and (4) species opting for high altitudes on the gradient or preferring lower to middle elevations below 1000 m. Our study showed a unimodal pattern of flea diversity along the elevational gradient. It indicated that seasonality significantly conditions changes in biodiversity and patterns of spatial change along the elevational gradient, with specific flea species influenced by their host, while the impact of environmental conditions is more pronounced in opportunistic flea species.


Sign in / Sign up

Export Citation Format

Share Document