scholarly journals Cyclone Amphan effects on the copepods of Ganges estuary

Author(s):  
Sourav Paul ◽  
Samya Karan ◽  
Bhaskar Deb Bhattacharya

Abstract Tropical cyclones are increasingly affecting the estuarine communities. Impacts of category-5 tropical cyclone Amphan (landfall on 20 May 2020 near Ganges estuary mouth) on the copepod community of Muriganga section of Ganges estuary was studied by sampling the copepod assemblages before (February to December 2019), shortly after (31 May to 12 June 2020) and post (September to November 2020) cyclone. Hypothesis was shortly after Amphan a relatively homogenous community consists of a few estuarine specialist copepods would succeed but within months that community would be replaced by a heterogenous one but those estuarine specialists would continue their dominance. Shortly after Amphan, species richness declined but the recovery process completed within months led by herbivorous Paracalanus parvus, omnivorous Bestiolina similis, Acartia spinicauda, Acartiella tortaniformis, and carnivorous Oithona brevicornis. Spatial homogeneity of the community that prevailed in Muriganga in pre-Amphan and shorty after Amphan was lost in post-Amphan. Community composition changed from pre- to shortly after to post-Amphan. Unilateral dominance of B. similis observed in pre-Amphan was challenged by P. parvus, A. spinicauda, A. tortaniformis and O. brevicornis shortly after Amphan and in post-Amphan. Acartia spinicauda proliferated shortly after Amphan and co-dominated the estuary along with A. tortaniformis but the latter replaced the former in post-Amphan. Copepods did rebuild their community within a few months from Amphan but experienced rearrangements of species composition, abundance, dominance hierarchy and feeding guilds, which may strain benthic-pelagic linkages of Ganges estuary so shall be monitored regularly by coastal institutions following uniform methods and best practises.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hamish Steptoe ◽  
Nicholas Henry Savage ◽  
Saeed Sadri ◽  
Kate Salmon ◽  
Zubair Maalick ◽  
...  

AbstractHigh resolution simulations at 4.4 km and 1.5 km resolution have been performed for 12 historical tropical cyclones impacting Bangladesh. We use the European Centre for Medium-Range Weather Forecasting 5th generation Re-Analysis (ERA5) to provide a 9-member ensemble of initial and boundary conditions for the regional configuration of the Met Office Unified Model. The simulations are compared to the original ERA5 data and the International Best Track Archive for Climate Stewardship (IBTrACS) tropical cyclone database for wind speed, gust speed and mean sea-level pressure. The 4.4 km simulations show a typical increase in peak gust speed of 41 to 118 knots relative to ERA5, and a deepening of minimum mean sea-level pressure of up to −27 hPa, relative to ERA5 and IBTrACS data. The downscaled simulations compare more favourably with IBTrACS data than the ERA5 data suggesting tropical cyclone hazards in the ERA5 deterministic output may be underestimated. The dataset is freely available from 10.5281/zenodo.3600201.


2015 ◽  
Vol 143 (3) ◽  
pp. 878-882 ◽  
Author(s):  
Roman Kowch ◽  
Kerry Emanuel

Abstract Probably not. Frequency distributions of intensification and dissipation developed from synthetic open-ocean tropical cyclone data show no evidence of significant departures from exponential distributions, though there is some evidence for a fat tail of dissipation rates. This suggests that no special factors govern high intensification rates and that tropical cyclone intensification and dissipation are controlled by statistically random environmental and internal variability.


2012 ◽  
Vol 27 (3) ◽  
pp. 757-769 ◽  
Author(s):  
James I. Belanger ◽  
Peter J. Webster ◽  
Judith A. Curry ◽  
Mark T. Jelinek

Abstract This analysis examines the predictability of several key forecasting parameters using the ECMWF Variable Ensemble Prediction System (VarEPS) for tropical cyclones (TCs) in the North Indian Ocean (NIO) including tropical cyclone genesis, pregenesis and postgenesis track and intensity projections, and regional outlooks of tropical cyclone activity for the Arabian Sea and the Bay of Bengal. Based on the evaluation period from 2007 to 2010, the VarEPS TC genesis forecasts demonstrate low false-alarm rates and moderate to high probabilities of detection for lead times of 1–7 days. In addition, VarEPS pregenesis track forecasts on average perform better than VarEPS postgenesis forecasts through 120 h and feature a total track error growth of 41 n mi day−1. VarEPS provides superior postgenesis track forecasts for lead times greater than 12 h compared to other models, including the Met Office global model (UKMET), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Global Forecasting System (GFS), and slightly lower track errors than the Joint Typhoon Warning Center. This paper concludes with a discussion of how VarEPS can provide much of this extended predictability within a probabilistic framework for the region.


2007 ◽  
Vol 135 (4) ◽  
pp. 1195-1207 ◽  
Author(s):  
Timothy F. Hogan ◽  
Randal L. Pauley

Abstract The influence of convective momentum transport (CMT) on tropical cyclone (TC) track forecasts is examined in the Navy Operational Global Atmospheric Prediction System (NOGAPS) with the Emanuel cumulus parameterization. Data assimilation and medium-range forecast experiments show that for 35 tropical cyclones during August and September 2004 the inclusion of CMT in the cumulus parameterization significantly improves the TC track forecasts. The tests show that the track forecasts are very sensitive to the magnitude of the Emanuel parameterization’s convective momentum transport parameter, which controls the CMT tendency returned by the parameterization. While the overall effect of this formulation of CMT in NOGAPS data assimilation/medium-range forecasts results in the surface pressure of tropical cyclones being less intense (and more consistent with the analysis), the parameterization is not equivalent to a simple diffusion of winds in the presence of convection. This is demonstrated by two data assimilation/medium-range forecast tests in which a vertical diffusion algorithm replaces the CMT. Two additional data assimilation/medium-range forecast experiments were conducted to test whether the skill increase primarily comes from the CMT in the immediate vicinity of the tropical cyclones. The results show that the inclusion of the CMT calculation in the vicinity of the TC makes the largest contribution to the increase in forecast skill, but the general contribution of CMT away from the TC also plays an important role.


2012 ◽  
Vol 33 (2) ◽  
pp. 181-197 ◽  
Author(s):  
Krzysztof Pabis ◽  
Jacek Siciński

Is polychaete diversity in the deep sublittoral of an Antarctic fiord related to habitat complexity?Seventy-six species of Polychaeta were found in 19 quantitative samples collected in the deep sublittoral (200-500 m) of Admiralty Bay (South Shetlands). Three assemblages were distinguished by similarity analysis (clustering, nMDS). The soft bottom in depths from 200 to 300m was strongly dominated byMaldane sarsi antarcticaand had very low species richness and diversity. The second assemblage was distinguished in the areas of the sea floor in the same depth range but with aggregations of Ascidiacea and Bryozoa. It was again characterized by high abundance ofMaldane sarsi antarctica, but showed significantly higher species richness and diversity. Diversity of polychaete feeding guilds was also high in these areas. This pattern was probably associated with an increased habitat complexity due to the presence of dense aggregations of large suspension feeders. High species richness and diversity was also noted in the third assemblage, associated with the deepest sublittoral (400-500 m) of Admiralty Bay. This is the area characterized by very stable environmental conditions, where the assemblage was dominated byTharyx cincinnatus, Sternaspissp.,Maldane sarsi antarctica, andAsychis amphiglypta.


Author(s):  
Nadia Bloemendaal ◽  
Hans de Moel ◽  
Jantsje M Mol ◽  
Priscilla R.M. Bosma ◽  
Amy N Polen ◽  
...  

2013 ◽  
Vol 70 (4) ◽  
pp. 1023-1034 ◽  
Author(s):  
Liguang Wu ◽  
Huijun Zong ◽  
Jia Liang

Abstract Large-scale monsoon gyres and the involved tropical cyclone formation over the western North Pacific have been documented in previous studies. The aim of this study is to understand how monsoon gyres affect tropical cyclone formation. An observational study is conducted on monsoon gyres during the period 2000–10, with a focus on their structures and the associated tropical cyclone formation. A total of 37 monsoon gyres are identified in May–October during 2000–10, among which 31 monsoon gyres are accompanied with the formation of 42 tropical cyclones, accounting for 19.8% of the total tropical cyclone formation. Monsoon gyres are generally located on the poleward side of the composited monsoon trough with a peak occurrence in August–October. Extending about 1000 km outward from the center at lower levels, the cyclonic circulation of the composited monsoon gyre shrinks with height and is replaced with negative relative vorticity above 200 hPa. The maximum winds of the composited monsoon gyre appear 500–800 km away from the gyre center with a magnitude of 6–10 m s−1 at 850 hPa. In agreement with previous studies, the composited monsoon gyre shows enhanced southwesterly flow and convection on the south-southeastern side. Most of the tropical cyclones associated with monsoon gyres are found to form near the centers of monsoon gyres and the northeastern end of the enhanced southwesterly flows, accompanying relatively weak vertical wind shear.


2014 ◽  
Vol 27 (24) ◽  
pp. 9197-9213 ◽  
Author(s):  
Michael Horn ◽  
Kevin Walsh ◽  
Ming Zhao ◽  
Suzana J. Camargo ◽  
Enrico Scoccimarro ◽  
...  

Abstract Future tropical cyclone activity is a topic of great scientific and societal interest. In the absence of a climate theory of tropical cyclogenesis, general circulation models are the primary tool available for investigating the issue. However, the identification of tropical cyclones in model data at moderate resolution is complex, and numerous schemes have been developed for their detection. The influence of different tracking schemes on detected tropical cyclone activity and responses in the Hurricane Working Group experiments is examined herein. These are idealized atmospheric general circulation model experiments aimed at determining and distinguishing the effects of increased sea surface temperature and other increased CO2 effects on tropical cyclone activity. Two tracking schemes are applied to these data and the tracks provided by each modeling group are analyzed. The results herein indicate moderate agreement between the different tracking methods, with some models and experiments showing better agreement across schemes than others. When comparing responses between experiments, it is found that much of the disagreement between schemes is due to differences in duration, wind speed, and formation-latitude thresholds. After homogenization in these thresholds, agreement between different tracking methods is improved. However, much disagreement remains, accountable for by more fundamental differences between the tracking schemes. The results indicate that sensitivity testing and selection of objective thresholds are the key factors in obtaining meaningful, reproducible results when tracking tropical cyclones in climate model data at these resolutions, but that more fundamental differences between tracking methods can also have a significant impact on the responses in activity detected.


Sign in / Sign up

Export Citation Format

Share Document