scholarly journals Genome-wide identification and characterization of lncRNAs responding to iron deficiency in Oryza sativa

2020 ◽  
Author(s):  
Shoudong Wang ◽  
Shuo Sun ◽  
Huixia Shou

Abstract Background: Iron (Fe) plays a vital role in various cellular processes in plants, including chlorophyll biosynthesis, photosynthesis and respiration. Fe deficiency directly affects crop growth and development, ultimately resulting in reduced crop yield and quality. Long non-coding RNAs (lncRNAs) have recently been demonstrated to play critical regulatory roles in a multitude of pathways across numerous species. However, systematic screening of lncRNAs responding to Fe deficiency in plants has not been reported. In this work, genome-wide identification and characterization of lncRNAs responsive to Fe deficiency were performed by strand-specific RNA sequencing in rice. Results: In total, 6477 lncRNAs were identified. In Fe-deficient conditions, 47 lncRNAs were up-regulated and 33 lncRNAs were down-regulated in shoots, while 89 lncRNAs were up-regulated and 32 lncRNAs were down-regulated in roots compared to normal conditions. The lncRNAs that were differentially expressed under Fe-sufficient and -deficient conditions appear to be clustered in the genome. Among five monocotyledon species, 88 lncRNAs were conserved, but only 3 lncRNAs responded to Fe deficiency in shoots. Two lncRNAs were identified as putative target mimics of miRNAs that respond to Fe deficiency. Conclusions: Our results provide evidence that lncRNAs are involved in Fe-deficiency signaling pathway in plants, providing a new pathway for further investigation into Fe-regulatory and response mechanisms.

2020 ◽  
Author(s):  
Shoudong Wang ◽  
Shuo Sun ◽  
Runze Guo ◽  
Wenying Liao ◽  
Huixia Shou

Abstract Background Iron (Fe) plays a vital role in various cellular processes in plants, including biosynthesis of chlorophyll, photosynthesis and respiration. Fe deficiency directly affects crop growth and development, ultimately resulting in reduced crop yield and quality. Long non-coding RNAs (lncRNAs) have recently been demonstrated to play critical regulatory roles in a multitude of pathways across numerous species. However, systematic screening of lncRNAs responding to Fe deficiency in plants has not been reported. Results In this work, lncRNAs responsive to Fe deficiency were identified across the rice genome by strand-specific RNA sequencing. In total, 6,477 lncRNAs were identified. In Fe-deficient conditions, 47 lncRNAs were up-regulated and 33 lncRNAs were down-regulated in shoots, while 89 lncRNAs were up-regulated and 32 lncRNAs were down-regulated in roots, compared to normal conditions. Two lncRNAs (XLOC_010112 and XLOC_053944) were identified as potential miRNA precursors and another two (XLOC_012715 and XLOC_054182) as miRNA target mimics that may participate in Fe regulation. A number of differentially expressed lncRNAs (DE-lncRNAs) are likely to modulate the expression of Fe-related genes via a cis- or trans-regulation mode, including 3 DE-lncRNAs (XLOC_034336, XLOC_037283 and XLOC_043545) located nearby OsbHLH156 and OsHRZ2 genomic regions. Seventy-six DE-lncRNAs were found to be regulated by bHLH156 at the transcriptional level. Conclusions This study provides a first profile of lncRNA expression as well as identifies the lncRNAs likely to play important roles in the regulation of Fe homeostasis. This identification and characterization form an important basis for understanding Fe regulatory networks in rice.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 536 ◽  
Author(s):  
Xiaobo Zhao ◽  
Liming Gan ◽  
Caixia Yan ◽  
Chunjuan Li ◽  
Quanxi Sun ◽  
...  

Long non-coding RNAs (lncRNAs) are involved in various regulatory processes although they do not encode protein. Presently, there is little information regarding the identification of lncRNAs in peanut (Arachis hypogaea Linn.). In this study, 50,873 lncRNAs of peanut were identified from large-scale published RNA sequencing data that belonged to 124 samples involving 15 different tissues. The average lengths of lncRNA and mRNA were 4335 bp and 954 bp, respectively. Compared to the mRNAs, the lncRNAs were shorter, with fewer exons and lower expression levels. The 4713 co-expression lncRNAs (expressed in all samples) were used to construct co-expression networks by using the weighted correlation network analysis (WGCNA). LncRNAs correlating with the growth and development of different peanut tissues were obtained, and target genes for 386 hub lncRNAs of all lncRNAs co-expressions were predicted. Taken together, these findings can provide a comprehensive identification of lncRNAs in peanut.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 567
Author(s):  
Shoudong Wang ◽  
Shuo Sun ◽  
Runze Guo ◽  
Wenying Liao ◽  
Huixia Shou

Iron (Fe) deficiency directly affects crop growth and development, ultimately resulting in reduced crop yield and quality. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to play critical regulatory roles in a multitude of pathways across numerous species. However, systematic screening of lncRNAs responding to Fe deficiency and their regulatory mechanism in plants has not been reported. In this work, 171 differently expressed lncRNAs (DE-lncRNAs) were identified based on analysis of strand-specific RNA-seq data from rice shoots and roots under Fe-deficient conditions. We also found several lncRNAs, which could generate miRNAs or act as endogenous target mimics to regulate expression of Fe-related genes. Analysis of interaction networks and gene ontology enrichment revealed that a number of DE-lncRNAs were associated with iron transport and photosynthesis, indicating a possible role of lncRNAs in regulation of Fe homeostasis. Moreover, we identified 76 potential lncRNA targets of OsbHLH156, a key regulator for transcriptional response to Fe deficiency. This study provides insight into the potential functions and regulatory mechanism of Fe-responsive lncRNAs and would be an initial and reference for any further studies regarding lncRNAs involved in Fe deficiency in plants.


RSC Advances ◽  
2018 ◽  
Vol 8 (60) ◽  
pp. 34408-34417 ◽  
Author(s):  
Wen Qi Li ◽  
Yu Lin Jia ◽  
Feng Quan Liu ◽  
Fang Quan Wang ◽  
Fang Jun Fan ◽  
...  

Plant long non-coding RNA (lncRNA) is a type of newly emerging epigenetic regulator playing a critical role in plant growth, development, and biotic stress responses.


2019 ◽  
Vol 20 (3) ◽  
pp. 409-419 ◽  
Author(s):  
Kun Du ◽  
Guo-Ze Wang ◽  
An-yong Ren ◽  
Ming-cheng Cai ◽  
Gang Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document