scholarly journals Rehydration of Dried Mushroom Specimens With Aerosol OT for Scanning Electron Microscopy

Author(s):  
Janina Antonia Koch ◽  
Alicia Fischer ◽  
Cathrin Manz ◽  
Karl-Heinz Rexer

Abstract Morphological, anatomical and ultrastructural characteristics are important for taxonomical and phylogenetic studies of fungi. For scanning electron microscopy, usually only dry voucher specimens are available. For dried plant material, Aerosol OT has been shown to be a suitable rehydration agent for SEM preparation. For swelling and stabilization of fungal cells, however, this simple method does not yield satisfactory results. Here, we show that a combination of Aerosol OT with ultrasonic bath and rehydration in a vacuum desiccator is a good method to distend fungal cells like basidiospores, pleuro- and cheilocystidia for SEM analysis. Tissues of several species of Agaricomycetes with diverse morphological structures were exposed to the treatment. Diverse concentrations of Aerosol OT as well as treatments in an ultrasonic bath and a vacuum desiccator were tested to optimize the surface reconstruction and to reduce preparation artefacts. The evaluated rehydration method is a cheap, quick and nontoxic method to prepare dried specimens of fungal cells for SEM analysis.

Author(s):  
M.E. Lee ◽  
A. Moller ◽  
P.S.O. Fouche ◽  
I.G Gaigher

Scanning electron microscopy of fish scales has facilitated the application of micro-structures to systematics. Electron microscopy studies have added more information on the structure of the scale and the associated cells, many problems still remain unsolved, because of our incomplete knowledge of the process of calcification. One of the main purposes of these studies has been to study the histology, histochemistry, and ultrastructure of both calcified and decalcified scales, and associated cells, and to obtain more information on the mechanism of calcification in the scales. The study of a calcified scale with the electron microscope is complicated by the difficulty in sectioning this material because of the close association of very hard tissue with very soft tissues. Sections often shatter and blemishes are difficult to avoid. Therefore the aim of this study is firstly to develop techniques for the preparation of cross sections of fish scales for scanning electron microscopy and secondly the application of these techniques for the determination of the structures and calcification of fish scales.


2021 ◽  
Author(s):  
Rowan Mclachlan ◽  
Ashruti Patel ◽  
Andrea G Grottoli

Coral morphology is influenced by genetics, the environment, or the interaction of both, and thus is highly variable. This protocol outlines a non-destructive and relatively simple method for measuring Scleractinian coral sub-corallite skeletal structures (such as the septa length, theca thickness, and corallite diameter, etc.) using digital images produced as a result of digital microscopy or from scanning electron microscopy. This method uses X and Y coordinates of points placed onto photomicrographs to automatically calculate the length and/or diameter of a variety of sub-corallite skeletal structures in the Scleractinian coral Porites lobata. However, this protocol can be easily adapted for other coral species - the only difference may be the specific skeletal structures that are measured (for example, not all coral species have a pronounced columella or pali, or even circular corallites). This protocol is adapted from the methods described in Forsman et al. (2015) & Tisthammer et al. (2018). There are 4 steps to this protocol: 1) Removal of Organic Tissue from Coral Skeletons 2) Imaging of Coral Skeletons 3) Photomicrograph Image Analysis 4) Calculation of Corallite Microstructure Size This protocol was written by Dr. Rowan McLachlan and was reviewed by Ashruti Patel and Dr. Andréa Grottoli. Acknowledgments Leica DMS 1000 and Scanning Electron Microscopy photomicrographs used in this protocol were acquired at the Subsurface Energy Materials Characterization and Analysis Laboratory (SEMCAL), School of Earth Sciences at The Ohio State University, Ohio, USA. I would like to thank Dr. Julie Sheets, Dr. Sue Welch, and Dr. David Cole for training me on the use of these instruments.


2020 ◽  
Vol 861 ◽  
pp. 378-382
Author(s):  
Sophoan Phal ◽  
Muhammad Rafiullah Khan ◽  
Pattarin Leelaphiwat ◽  
Vanee Chonhenchob

Sodium alginate based films containing turmeric oil (TEO) at different concentrations (1, 2 and 3%) were developed. The film with no TEO was used as control. Incorporation of TEO had the effects on the film properties. With increasing TEO concentrations, thickness, elongation at break, permeability of oxygen and water vapor of the films significantly (p ≤ 0.05) increased. Whereas moisture content, tensile strength and modulus of elasticity significantly (p ≤ 0.05) decreased. Scanning electron microscopy (SEM) analysis showed more numerous pores and rougher surface of the antifungal films than the control film.


1979 ◽  
Vol 16 (8) ◽  
pp. 1621-1628 ◽  
Author(s):  
Donald E. Champagne ◽  
C. R. Harington ◽  
Don E. McAllister

A nodule containing the cranium of a deepwater sculpin, Myoxocephalus thompsoni (Girard), was discovered in Pleistocene Champlain Sea deposits at Green Creek, 10 km east of Ottawa, Ontario, Canada, and represents the first fossil reported for the species. It provides an additional basis for refuting derivation of the species from a post-Wisconsin marine submergence and suggests an origin at the beginning of the Wisconsin or earlier. Habitat preferences of the species favour an oligotrophic lacustrine environment with bottom summer temperatures below 8 °C in the Champlain Sea or nearby lake basin. The head length of the fossil is 28 mm, the estimated standard length 86 mm. Use of a longwave ultraviolet lamp with the fossil improved contrast between the bones and the clay matrix in photographs. Scanning electron microscopy (SEM) analysis of bone in the fossil failed to detect the presence of strontium.


2012 ◽  
Vol 535-537 ◽  
pp. 280-283 ◽  
Author(s):  
Hao Ran An ◽  
Feng Shi Cai ◽  
Xue Wei Wang ◽  
Zhi Hao Yuan

Different morphology CuO nanostructures, including platelets, flower-like were simply synthesized at 350 °C controlled by droplet on hydrophobic substrate. This is a simple method which does not require any template, catalyst, or surfactant but can control the morphology of CuO from platelets to flowerlike. The morphologies are strongly dependent on the volume of droplet. Scanning electron microscopy (SEM), Optical microscope and X-ray diffraction (XRD) were used to observe the morphology, crystallinity, and chemical composition of the CuO structures. Growth mechanisms for shape selective CuO synthesis were proposed based on these results.


1989 ◽  
Vol 153 ◽  
Author(s):  
D. Feldman ◽  
M.A. Lacasse

AbstractThe morphology of blended polyurethane (PU) sealants was studied by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The PU was modifided by mechanical mixing with various amounts of Lignin (L) to achieve a homogeneous blend. Specimens were subjected to control (C), accelerated weathering (AW), and natural weathering (NW) conditions. Results obtained from SEM analysis reveal an even distribution of L particles in the PU matrix. Furthermore, the SEM photomicrographs clearly emphasize the differing morphologies of the constituent phases. They also depict the differences in surface texture between control and aged specimens. The DSC analysis shows that the two phases are immiscible which is in agreement with observations by microscopy.


Sign in / Sign up

Export Citation Format

Share Document