Multilevel characteristics of TiOx transparent non-volatile resistive switching device by embedding SiO2 nanoparticles

Author(s):  
Sera Kwon ◽  
Min-Jung Kim ◽  
Kwun-Bum Chung

Abstract TiOx-bsed resistive switching devices have recently attracted attention as a promising candidate for next-generation non-volatile memory devices. A number of studies have attempted to increase the structural density of resistive switching devices. The fabrication of a multi-level switching device is a feasible method for increasing the density of the memory cell. Herein, we attempt to obtain a non-volatile multi-level switching memory device that is highly transparent by embedding SiO2 nanoparticles (NPs) into the TiOx matrix (TiOx@SiO2 NPs). The fully transparent resistive switching device is fabricated with an ITO/TiOx@SiO2 NPs/ITO structure on glass substrate, and it shows transmittance over 95 % in the visible range. The TiOx@SiO2 NPs device shows outstanding switching characteristics, such as a high on/off ratio, long retention time, good endurance, and distinguishable multi-level switching. To understand multi-level switching characteristics by adjusting the set voltages, we analyze the switching mechanism in each resistive state. This method represents a promising approach for high-performance non-volatile multi-level memory applications.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sera Kwon ◽  
Min-Jung Kim ◽  
Kwun-Bum Chung

AbstractTiOx-based resistive switching devices have recently attracted attention as a promising candidate for next-generation non-volatile memory devices. A number of studies have attempted to increase the structural density of resistive switching devices. The fabrication of a multi-level switching device is a feasible method for increasing the density of the memory cell. Herein, we attempt to obtain a non-volatile multi-level switching memory device that is highly transparent by embedding SiO2 nanoparticles (NPs) into the TiOx matrix (TiOx@SiO2 NPs). The fully transparent resistive switching device is fabricated with an ITO/TiOx@SiO2 NPs/ITO structure on glass substrate, and it shows transmittance over 95% in the visible range. The TiOx@SiO2 NPs device shows outstanding switching characteristics, such as a high on/off ratio, long retention time, good endurance, and distinguishable multi-level switching. To understand multi-level switching characteristics by adjusting the set voltages, we analyze the switching mechanism in each resistive state. This method represents a promising approach for high-performance non-volatile multi-level memory applications.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42249-42255
Author(s):  
Xiaohan Wu ◽  
Ruijing Ge ◽  
Yifu Huang ◽  
Deji Akinwande ◽  
Jack C. Lee

Constant voltage and current stress were applied on MoS2 resistive switching devices, showing unique behaviors explained by a modified conductive-bridge-like model.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1081
Author(s):  
Shin-Yi Min ◽  
Won-Ju Cho

In this study, we implemented a high-performance two-terminal memristor device with a metal/insulator/metal (MIM) structure using a solution-derived In-Ga-Zn-Oxide (IGZO)-based nanocomposite as a resistive switching (RS) layer. In order to secure stable memristive switching characteristics, IGZO:N nanocomposites were synthesized through the microwave-assisted nitridation of solution-derived IGZO thin films, and the resulting improvement in synaptic characteristics was systematically evaluated. The microwave-assisted nitridation of solution-derived IGZO films was clearly demonstrated by chemical etching, optical absorption coefficient analysis, and X-ray photoelectron spectroscopy. Two types of memristor devices were prepared using an IGZO or an IGZO:N nanocomposite film as an RS layer. As a result, the IGZO:N memristors showed excellent endurance and resistance distribution in the 103 repeated cycling tests, while the IGZO memristors showed poor characteristics. Furthermore, in terms of electrical synaptic operation, the IGZO:N memristors possessed a highly stable nonvolatile multi-level resistance controllability and yielded better electric pulse-induced conductance modulation in 5 × 102 stimulation pulses. These findings demonstrate that the microwave annealing process is an effective synthesis strategy for the incorporation of chemical species into the nanocomposite framework, and that the microwave-assisted nitridation improves the memristive switching characteristics in the oxide-based RS layer.


2015 ◽  
Vol 645-646 ◽  
pp. 169-177
Author(s):  
Xiao Rong Chen ◽  
Jie Feng

Pt/HfOx/Pt resistive switching devices with symmetric electrodes were fabricated. Bipolar resistive switching (RS) behaviors and unipolar behaviors were then observed under a positive/negative bias applied to the top electrode (TE). A comparison and analysis of bipolar/unipolar RS behaviors under different voltage polarities was then performed.The results demonstrated that bipolar RS was achieved via a drift of anion (O2-) under the electric field resulting in the rupture and recovery of filaments at the interface. When the filaments dissolved and formed at the interface near BE, the performance of the bipolar RS devices was better. However, for unipolar RS devices, when filaments dissolved and formed at the interface near TE, the performance was even better. These results indicated that a drift of O2-caused by electric field and a diffusion of O2-induced by Joule heat were the main reasons for unipolar RS. The different characteristics of the bipolar and unipolar devices can be attributed to the existence of a different number of defects at the active interface of the devices. This was where the rupture and recovery of filaments occurred. The results also indicate that the active interface is more important than other interfaces for RRAM performance.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1228 ◽  
Author(s):  
Dong Keun Lee ◽  
Min-Hwi Kim ◽  
Suhyun Bang ◽  
Tae-Hyeon Kim ◽  
Sungjun Kim ◽  
...  

In this research, nano-wedge resistive switching random-access memory (ReRAM) based on a Si3N4 switching layer and silicon bottom electrode was fabricated, and its multilevel switching characteristics were investigated. The wedge bottom electrode was formed by a tetramethyl ammonium hydroxide (TMAH) wet-etching process. The nano-wedge ReRAM was demonstrated to have different reset current levels by varying the compliance currents. To explain the effect of modulating the compliance currents, the switching characteristics of both the SET and RESET behaviors were shown. After measuring the device under four different compliance currents, it was proved to have different current levels due to an inhibited resistive state after a SET switching process. Furthermore, SPICE circuit simulation was carried out to show the effect of line resistance on current summation for the array sizes of 8 × 8 and 16 × 16. These results indicate the importance of minimizing the line resistance for successful implementation as a hardware-based neural network.


2017 ◽  
Vol 131 ◽  
pp. 34-38 ◽  
Author(s):  
Zhao Yang ◽  
Zhi Luo ◽  
Haitao Tang ◽  
Bo Huang ◽  
Weiguang Xie

AIP Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 015218
Author(s):  
Xing Gao ◽  
Carlos M. M. Rosário ◽  
Hans Hilgenkamp

2018 ◽  
Vol 30 (3) ◽  
pp. 781-788 ◽  
Author(s):  
Sung Kyu Jang ◽  
Sookyung Kim ◽  
Muhammad Saad Salman ◽  
Ji-ryang Jang ◽  
Yu Mi Um ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document