scholarly journals Surface Chemistry Provoked Strategy to Develop Sustainable Latent Fingerprints Visualization and Multiple Anti-Counterfeiting Trajectory: Aggregation-Induced Emission Mechanism Based Active Conjugated Imidazole Luminogens

Author(s):  
M. K. Ravindra ◽  
Giriyapura Prabhukumara Darshan ◽  
D. R. Lavanya ◽  
K. M. Mahadevan ◽  
H. B. Premkumar ◽  
...  

Abstract Aggregation-induced emission based organic heterocyclic luminogens bearing conjugated electronic structure have paid much attention due to its excellent fluorescence in aggregation state. In this communication, novel conjugated blue light emitting imidazole molecule is synthesized by one pot multicomponent reaction route is reported for the first time. The prepared molecule exhibits a strong fluorescence in aggregation state have gain much attention owing to their unique properties, namely simple synthesis, high purity, inexpensive, eco-friendly, large scale production, high photostability, etc. By considering these advantages of the prepared luminogen, a new fluorescence based platform has been setup for in-situ visualization of latent fingerprints and its preservation by spray method followed by Poly(vinyl alcohol) masking. A clear and well defined fluorescence fingerprint images on variety of surfaces by revealing level 1–3 ridge characteristics upon ultraviolet 365 nm light are noticed. The dual nature of binding specificity as well as excellent fluorescence properties permits the visualization of latent fingerprints for longer durations (up to 365 days) with superior contrast, sensitivity, efficiency, selectivity and negligible background hindrance. We further fabricated unclonable invisible security ink and make it highly suitable for various printing modes on valuable goods for protection against forging. The developed labels are displaying uniform distribution of ink and exceptional stability under various atmospheric environments. The development of long preservative forensic information as well as invisible ink opens new avenue in advanced forensic and data security applications.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. K. Ravindra ◽  
G. P. Darshan ◽  
D. R. Lavanya ◽  
K. M. Mahadevan ◽  
H. B. Premkumar ◽  
...  

AbstractAggregation-induced emission based organic heterocyclic luminogens bearing conjugated electronic structures showed much attention due to its excellent fluorescence in aggregation state. In this communication, a novel conjugated blue light emitting imidazole molecule is synthesized by one pot multicomponent reaction route is reported for the first time. The prepared molecule exhibits a strong fluorescence in aggregation state with exceptional properties, such as high purity, inexpensive, eco-friendly, large scale production, high photostability, etc. By considering these advantages, a new fluorescence based platform has been setup for in-situ visualization of latent fingerprints and its preservation by spray method followed by Poly(vinyl alcohol) masking. A clear and well defined fluorescence fingerprint images are noticed on variety of surfaces by revealing level 1–3 ridge features upon ultraviolet 365 nm light exposure. The dual nature of binding specificity as well as excellent fluorescence properties permits the visualization of latent fingerprints for longer durations (up to 365 days) with superior contrast, high sensitivity, efficiency, selectivity and minimal background hindrance. We further fabricated unclonable invisible security ink for various printing modes on valuable goods for protection against forging. The developed labels are displaying uniform distribution of ink and exceptional stability under various atmospheric environments. The development of long preservative information using aggregation-induced emission based luminogen opens up a new avenue in advanced forensic and data security applications.


2018 ◽  
Vol 15 (4) ◽  
pp. 572-575 ◽  
Author(s):  
Ponnusamy Kannan ◽  
Samuel I.D. Presley ◽  
Pallikondaperumal Shanmugasundaram ◽  
Nagapillai Prakash ◽  
Deivanayagam Easwaramoorthy

Aim and Objective: Itopride is a prokinetic agent used for treating conditions like non-ulcer dyspepsia. Itopride is administered as its hydrochloride salt. Trimethobenzamide is used for treating nausea and vomiting and administered as its hydrochloride salt. The aim is to develop a novel and environmental friendly method for large-scale production of itopride and trimethobenzamide. Materials and Methods: Itopride and trimethobenzamide can be prepared from a common intermediate 4- (dimethylaminoethoxy) benzyl amine. The intermediate is prepared from one pot synthesis using Phyrdroxybenzaldehye and zinc dust and further reaction of the intermediate with substituted methoxy benzoic acid along with boric acid and PEG gives itopride and trimethobenzamide. Results: The intermediate 4-(dimethylaminoethoxy) benzylamine is prepared by treating p-hydroxybenzaldehyde and 2-dimethylaminoethyl chloride. The aldehyde formed is treated with hydroxylamine hydrochloride. The intermediate is confirmed by NMR and the purity is analysed by HPLC. Conclusion: Both itopride and trimethobenzamide were successfully synthesized by this method. The developed method is environmental friendly, economical for large-scale production with good yield and purity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peipei Du ◽  
Jinghui Li ◽  
Liang Wang ◽  
Liang Sun ◽  
Xi Wang ◽  
...  

AbstractWith rapid advances of perovskite light-emitting diodes (PeLEDs), the large-scale fabrication of patterned PeLEDs towards display panels is of increasing importance. However, most state-of-the-art PeLEDs are fabricated by solution-processed techniques, which are difficult to simultaneously achieve high-resolution pixels and large-scale production. To this end, we construct efficient CsPbBr3 PeLEDs employing a vacuum deposition technique, which has been demonstrated as the most successful route for commercial organic LED displays. By carefully controlling the strength of the spatial confinement in CsPbBr3 film, its radiative recombination is greatly enhanced while the nonradiative recombination is suppressed. As a result, the external quantum efficiency (EQE) of thermally evaporated PeLED reaches 8.0%, a record for vacuum processed PeLEDs. Benefitting from the excellent uniformity and scalability of the thermal evaporation, we demonstrate PeLED with a functional area up to 40.2 cm2 and a peak EQE of 7.1%, representing one of the most efficient large-area PeLEDs. We further achieve high-resolution patterned perovskite film with 100 μm pixels using fine metal masks, laying the foundation for potential display applications. We believe the strategy of confinement strength regulation in thermally evaporated perovskites provides an effective way to process high-efficiency and large-area PeLEDs towards commercial display panels.


2019 ◽  
Vol 124 ◽  
pp. 838-845 ◽  
Author(s):  
Morgana Souza Marques ◽  
Κarine Modolon Zepon ◽  
Julia Maia Heckler ◽  
Fernando Dal Pont Morisso ◽  
Marcos Marques da Silva Paula ◽  
...  

2011 ◽  
Vol 15 (6) ◽  
pp. 1382-1387 ◽  
Author(s):  
Navnath C. Niphade ◽  
Kunal M. Jagtap ◽  
Chandrashekhar T. Gaikawad ◽  
Madhukar N. Jachak ◽  
Vijayavitthal T. Mathad

2017 ◽  
Vol 21 (11) ◽  
pp. 1745-1751 ◽  
Author(s):  
Mohan Reddy Bodireddy ◽  
Kiran Krishnaiah ◽  
Prashanth Kumar Babu ◽  
Chaithanya Bitra ◽  
Madhusudana Rao Gajula ◽  
...  

2021 ◽  
Vol 25 ◽  
Author(s):  
Carmela G. Arena

: Aliphatic secondary and tertiary amines are widely used in the production of pharmaceuticals, agrochemicals, dyes, surfactants and rubber chemicals. Most traditional synthetic methods are often unsuitable for large-scale production due to poor selectivity, harsh reaction conditions and the cost of starting materials. In this context, hydroaminomethylation (HAM) is a very attractive catalytic process with high atom economy that starts from inexpensive reagents, such as alkenes. This review aims to provide an updated overview of hydroaminomethylation as a useful tool for synthesizing aliphatic secondary and tertiary amines. Therefore, the discussion will focus on both unsaturated starting compounds and the amines obtained by this one-pot reaction.


2011 ◽  
Vol 287-290 ◽  
pp. 270-275 ◽  
Author(s):  
Xiao Xia Sun ◽  
Ying Chun Li ◽  
Xi Mei Liu ◽  
Xiao Xiao Zhuang ◽  
Ya Zhou Lou

A mide, simple and efficient synthetic procedure for the preparation of 2,7-dibromo-2′,3′,6′,7′-tetra(2-methylbutyloxy)spirobifluorene and key intermediates, tetra(2-methlbutyloxy)biphenyl ,2-bromo-4,5,3′,4′-tetra(2-methylbutyloxy)biphenyl, 2,7-Dibromo-2′,6,3′,7′--tetra(2-methylbutyloxy)biphenyl-9-Fluorenol, has been developed. The procedure described herein offers several advantages, including high product yields, easy purification, and large scale production. Ether protected 2,7-dibromo-9,9′-spirobifluorene has good solubility in organic aolvents to permit an appropriate coating process, ability to achieve various colors so as to make full color display elements possible.


Sign in / Sign up

Export Citation Format

Share Document