scholarly journals A Novel Data Gathering Algorithm For Wireless Sensor Networks Using Artificial Intelligence

Author(s):  
Swapna Ch ◽  
Vijayashree R Budyal

Abstract The most challenging task in wireless sensor network is energy efficiency, as energy is the major constraint in the wireless sensor network to improve the life time of the network. Hence developing algorithms to improve network life time is the major task. In wireless sensor network most of the energy is wasted while gathering the data, hence an efficient algorithm which conserves energy has to be designed. Thus our proposed work A Novel Data Gathering Algorithm for Wireless Sensor Networks using Artificial Intelligence (NDGAI) uses mobile element and deals with the conservation of energy while gathering the data. Appropriate clustering, cluster leader selection and proper path determination of mobile element helps to conserve energy and improve the over all network life time. In our proposed work initially the clusters are forged by using Amended Expectation Maximization(AEM) algorithm, which is the maximum likelihood estimate. It is used along with Gap statistic method to find the optimal number of clusters. AEM algorithm helps in obtaining the centres of the cluster with maximum number of nodes near the cluster centres. For each cluster, Cluster Leader (CL) is selected by using Fuzzy Logic. Fuzzy logic selects the node which is near to the cluster centre by using parameters such as Closeness of node to the Cluster Centroid, direction of node towards base station, number of Neighbouring Nodes. After the CL’s are determined, to reduce the path length virtual points(VP) are selected so that mobile element reaches this virtual point and collects the data. These VP’s are selected only when the CL has data in it. The mobile elements can reach these virtual points intelligently by using optimal path,that is obtained by using hybrid of Particle Swarm Optimization and Artificial Bee Colony algorithm. Thus the mobile element travels in the optimal path and gathers the data from the entire network intelligently and efficiently with less amount of energy. With this approach the performance and life time of the network is improved while gathering the data. The simulation results are compared with Scalable Grid-Based Data Gathering Algorithm for Environmental Monitoring Wireless Sensor Networks (SGBDN) and proved that the proposed method is better than SGBDN .

2020 ◽  
Vol 16 (8) ◽  
pp. 155014772093902
Author(s):  
Hang Wan ◽  
Michael David ◽  
William Derigent

Wireless Sensor Networks are very convenient to monitor structures or even materials, as in McBIM project (Materials communicating with the Building Information Modeling). This project aims to develop the concept of “communicating concretes,” which are concrete elements embedding wireless sensor networks, for applications dedicated to Structure Health Monitoring in the construction industry. Due to applicative constraints, the topology of the wireless sensor network follows a chain-based structure. Node batteries cannot be replaced or easily recharged, it is crucial to evaluate the energy consumed by each node during the monitoring process. This area has been extensively studied leading to different energy models to evaluate energy consumption for chain-based structures. However, no simple, practical, and analytical network energy models have yet been proposed. Energy evaluation models of periodic data collection for chain-based structures are proposed. These models are compared and evaluated with an Arduino XBee–based platform. Experimental results show the mean prediction error of our models is 5%. Realizing aggregation at nodes significantly reduces energy consumption and avoids hot-spot problem with homogeneous consumptions along the chain. Models give an approximate lifetime of the wireless sensor network and communicating concretes services. They can also be used online by nodes for a self-assessment of their energy consumptions.


2018 ◽  
Vol 7 (2.26) ◽  
pp. 25
Author(s):  
E Ramya ◽  
R Gobinath

Data mining plays an important role in analysis of data in modern sensor networks. A sensor network is greatly constrained by the various challenges facing a modern Wireless Sensor Network. This survey paper focuses on basic idea about the algorithms and measurements taken by the Researchers in the area of Wireless Sensor Network with Health Care. This survey also catego-ries various constraints in Wireless Body Area Sensor Networks data and finds the best suitable techniques for analysing the Sensor Data. Due to resource constraints and dynamic topology, the quality of service is facing a challenging issue in Wireless Sensor Networks. In this paper, we review the quality of service parameters with respect to protocols, algorithms and Simulations. 


2017 ◽  
Vol 13 (07) ◽  
pp. 36
Author(s):  
Yuxia Shen

<p><span style="font-size: medium;"><span style="font-family: 宋体;">In wireless sensor networks, for improving the time synchronization perfromance of online monitoring and application of ZigBee protocol, a scheme is designed. For this objective, first of all, the ZigBee protocol specification is summarized, a profound analysis of the hardware abstraction architecture of TinyOS operating system is made; the advantages of the ZigBee protocol compared with the traditional radio technology are comparatively analyzed. At the same time, the node design block diagram based on CC2430 and related development system is provided. In the TinyOS2.x operating system, we analyze CC2430 application program abstract architecture, and on this basis, give the realization process of program design. The research results showed that we achieve an on-line monitoring system based on ZigBee protocol, which has realistic significance of applying ZigBee protocol in wireless sensor network of electrical equipment online monitoring. Based on the above research, it is concluded that the online monitoring system can collect the temperature parameters of the monitored object in real time that it can be widely applied in wireless sensor networks.</span></span></p>


Author(s):  
Audrey NANGUE ◽  
◽  
Elie FUTE TAGNE ◽  
Emmanuel TONYE

The success of the mission assigned to a Wireless Sensor Network (WSN) depends heavily on the cooperation between the nodes of this network. Indeed, given the vulnerability of wireless sensor networks to attack, some entities may engage in malicious behavior aimed at undermining the proper functioning of the network. As a result, the selection of reliable nodes for task execution becomes a necessity for the network. To improve the cooperation and security of wireless sensor networks, the use of Trust Management Systems (TMS) is increasingly recommended due to their low resource consumption. The various existing trust management systems differ in their methods of estimating trust value. The existing ones are very rigid and not very accurate. In this paper, we propose a robust and accurate method (RATES) to compute direct and indirect trust between the network nodes. In RATES model, to compute the direct trust, we improve the Bayesian formula by applying the chaining of trust values, a local reward, a local penalty and a flexible global penalty based on the variation of successful interactions, failures and misbehaviors frequency. RATES thus manages to obtain a direct trust value that is accurate and representative of the node behavior in the network. In addition, we introduce the establishment of a simple confidence interval to filter out biased recommendations sent by malicious nodes to disrupt the estimation of a node's indirect trust. Mathematical theoretical analysis and evaluation of the simulation results show the best performance of our approach for detecting on-off attacks, bad-mouthing attacks and persistent attacks compared to the other existing approaches.


Author(s):  
Smriti Joshi ◽  
Anant Kr. Jayswal

Energy efficiency is the kernel issue in the designing of wireless sensor network(WSN) MAC protocols. Energy efficiency is a major consideration while designing wireless sensor network nodes. Most sensor network applications require energy autonomy for the complete lifetime of the node, which may span up to several years. These energy constraints require that the system be built such that Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. Each component consumes minimum possible power, ensure the average successful transmission rate, decrease the data packet average waiting time, and reduce the average energy consumption. Influencing by the design principles of traditional layered protocol stack, current MAC protocol designing for wireless sensor networks (WSN) seldom takes load balance into consideration, which greatly restricts WSN lifetime. As a novel Forwarding Election-based MAC protocol, is presented to prolong WSN lifetime by means of improving energy efficiency and enhancing load balance.


Author(s):  
Wajeeha Aslam ◽  
Muazzam A. Khan ◽  
M. Usman Akram ◽  
Nazar Abbas Saqib ◽  
Seungmin Rho

Wireless sensor networks are greatly habituated in widespread applications but still yet step behind human intelligence and vision. The main reason is constraints of processing, energy consumptions and communication of image data over the sensor nodes. Wireless sensor network is a cooperative network of nodes called motes. Image compression and transmission over a wide ranged sensor network is an emerging challenge with respect to battery, life time constraints. It reduces communication latency and makes sensor network efficient with respect to energy consumption. In this paper we will have an analysis and comparative look on different image compression techniques in order to reduce computational load, memory requirements and enhance coding speed and image quality. Along with compression, different transmission methods will be discussed and analyzed with respect to energy consumption for better performance in wireless sensor networks.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4281
Author(s):  
Ngoc-Thanh Dinh ◽  
Younghan Kim

Wireless sensor network (WSN) studies have been carried out for multiple years. At this stage, many real WSNs have been deployed. Therefore, configuration and updating are critical issues. In this paper, we discuss the issues of configuring and updating a wireless sensor network (WSN). Due to a large number of sensor nodes, in addition to the limited resources of each node, manual configuring turns out to be impossible. Therefore, various auto-configuration approaches have been proposed to address the above challenges. In this survey, we present a comprehensive review of auto-configuration mechanisms with the taxonomy of classifications of the existing studies. For each category, we discuss and compare the advantages and disadvantages of related schemes. Lastly, future works are discussed for the remaining issues in this topic.


Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


Sign in / Sign up

Export Citation Format

Share Document