scholarly journals A Signature of Seven Lipid Metabolism Genes to Predict Hepatocellular Carcinoma Prognosis

Author(s):  
Muqi Li ◽  
Xiwen Wu ◽  
Shufen Liao ◽  
shutong wang ◽  
shuirong lin ◽  
...  

Abstract BackgroundLipid metabolism is important in tumor progression. However, its role in hepatocellular carcinoma (HCC) remains unknown. We attempt to build a lipid metabolism-related signature to evaluate its role in predicting the prognosis of HCC patients. MethodsWe obtained differential expression genes (DEGs) through differential analysis of mRNA expression between tumor tissues and paraneoplastic tissue of patients with HCC. The lipid metabolism-related genes were obtained from KEGG and MisDB. The corresponding gene expression and clinical data were acquired from The Cancer Genome Atlas (TCGA) database and the International Cancer Genome Consortium (ICGC) database. Prognosis-related genes were obtained by COX regression analysis. Intersecting genes were defined as genes shared by DEGs and prognosis-related genes. The least absolute shrinkage and selection operator (LASSO) technique was used to calculate the prognostic genes and coefficients for forming a prognostic assessment signature. Kaplan–Meier survival analysis was applied to assess the model’s credibility. ICGC database was also used for external validation. ResultsA total of 39 lipid metabolism-related DEGs were analyzed that showed significant enrichment in the phospholipid metabolic process, glycerolipid metabolic process and glycerophospholipid pathways. Seven lipid metabolism genes (ELOVL3, LCLAT1, ME1, PPARGC1A, PTDSS2, SRD5A3, SLC2A1) closely related with prognosis were identified to construct the signature. Patients with low-risk scores showed better survival rates, which was also validated in the ICGC database. ConclusionWe established a signature composed of seven lipid metabolism-related genes to predict the prognosis of HCC patients, providing a new biomarker for the diagnosis and treatment of HCC.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Honglan Guo ◽  
Qinqiao Fan

Background. We aimed to investigate the expression of the hyaluronan-mediated motility receptor (HMMR) gene in hepatocellular carcinoma (HCC) and nonneoplastic tissues and to investigate the diagnostic and prognostic value of HMMR. Method. With the reuse of the publicly available The Cancer Genome Atlas (TCGA) data, 374 HCC patients and 50 nonneoplastic tissues were used to investigate the diagnostic and prognostic values of HMMR genes by receiver operating characteristic (ROC) curve analysis and survival analysis. All patients were divided into low- and high-expression groups based on the median value of HMMR expression level. Univariate and multivariate Cox regression analysis were used to identify prognostic factors. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanism of the HMMR genes involved in HCC. The diagnostic and prognostic values were further validated in an external cohort from the International Cancer Genome Consortium (ICGC). Results. HMMR mRNA expression was significantly elevated in HCC tissues compared with that in normal tissues from both TCGA and the ICGC cohorts (all P values <0.001). Increased HMMR expression was significantly associated with histologic grade, pathological stage, and survival status (all P values <0.05). The area under the ROC curve for HMMR expression in HCC and normal tissues was 0.969 (95% CI: 0.948–0.983) in the TCGA cohort and 0.956 (95% CI: 0.932–0.973) in the ICGC cohort. Patients with high HMMR expression had a poor prognosis than patients with low expression group in both cohorts (all P < 0.001 ). Univariate and multivariate analysis also showed that HMMR is an independent predictor factor associated with overall survival in both cohorts (all P values <0.001). GSEA showed that genes upregulated in the high-HMMR HCC subgroup were mainly significantly enriched in the cell cycle pathway, pathways in cancer, and P53 signaling pathway. Conclusion. HMMR is expressed at high levels in HCC. HMMR overexpression may be an unfavorable prognostic factor for HCC.


2020 ◽  
Author(s):  
Xinxin Xia ◽  
Hui Liu ◽  
Yuejun Li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. The immune system plays vital roles in HCC initiation and progression. The present study aimed to construct an immune-gene related prognostic signature (IRPS) for predicting the prognosis of HCC patients. Methods: Gene expression data were retrieved from The Cancer Genome Atlas database. Univariate Cox regression analysis was carried out to identify differentially expressed genes that associated with overall survival. The IRPS was established via Lasso and multivariate Cox regression analysis. Both Cox regression analyses were conducted to determine the independent prognostic factors for HCC. Next, the association between the IRPS and clinical-related factors were evaluated. The prognostic values of the IRPS were further validated using the International Cancer Genome Consortium (ICGC) dataset. Gene set enrichment analyses (GSEA) were conducted to understand the biological mechanisms of the IRPS. Results: A total of 62 genes were identified to be candidate immune-related prognostic genes. Transcription factors-immunogenes network was generated to explore the interactions among these candidate genes. According to the results of Lasso and multivariate Cox regression analysis, we established an IRPS and confirmed its stability and reliability in ICGC dataset. The IRPS was significantly associated with advanced clinicopathological characteristics. Both Cox regression analyses revealed that the IRPS could be an independent risk factor influencing the prognosis of HCC patients. The relationships between the IRPS and infiltration immune cells demonstrated that the IRPS was associated with immune cell infiltration. GSEA identified significantly enriched pathways, which might assist in elucidating the biological mechanisms of the IRPS. Furthermore, a nomogram was constructed to estimate the survival probability of HCC patients.Conclusions: The IRPS was effective for predicting prognosis of HCC patients, which might serve as novel prognostic and therapeutic biomarkers for HCC.


Open Medicine ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. 135-150
Author(s):  
Li Li ◽  
Yundi Cao ◽  
YingRui Fan ◽  
Rong Li

Abstract Hepatocellular carcinoma (HCC) has a high incidence and poor prognosis and is the second most fatal cancer, and certain HCC patients also show high heterogeneity. This study developed a prognostic model for predicting clinical outcomes of HCC. RNA and microRNA (miRNA) sequencing data of HCC were obtained from the cancer genome atlas. RNA dysregulation between HCC tumors and adjacent normal liver tissues was examined by DESeq algorithms. Survival analysis was conducted to determine the basic prognostic indicators. We identified competing endogenous RNA (ceRNA) containing 15,364 pairs of mRNA–long noncoding RNA (lncRNA). An imbalanced ceRNA network comprising 8 miRNAs, 434 mRNAs, and 81 lncRNAs was developed using hypergeometric test. Functional analysis showed that these RNAs were closely associated with biosynthesis. Notably, 53 mRNAs showed a significant prognostic correlation. The least absolute shrinkage and selection operator’s feature selection detected four characteristic genes (SAPCD2, DKC1, CHRNA5, and UROD), based on which a four-gene independent prognostic signature for HCC was constructed using Cox regression analysis. The four-gene signature could stratify samples in the training, test, and external validation sets (p <0.01). Five-year survival area under ROC curve (AUC) in the training and validation sets was greater than 0.74. The current prognostic gene model exhibited a high stability and accuracy in predicting the overall survival (OS) of HCC patients.


2020 ◽  
Author(s):  
Xinxin Xia ◽  
Hui Liu ◽  
Yuejun Li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. The immune system plays vital roles in HCC initiation and progression. The present study aimed to construct an immune-gene related prognostic signature (IRPS) for predicting the prognosis of HCC patients. Methods: Gene expression data were retrieved from The Cancer Genome Atlas database. Univariate Cox regression analysis was carried out to identify differentially expressed genes that associated with overall survival. The IRPS was established via Lasso and multivariate Cox regression analysis. Both Cox regression analyses were conducted to determine the independent prognostic factors for HCC. Next, the association between the IRPS and clinical-related factors were evaluated. The prognostic values of the IRPS were further validated using the International Cancer Genome Consortium (ICGC) dataset. Gene set enrichment analyses (GSEA) were conducted to understand the biological mechanisms of the IRPS.Results: A total of 62 genes were identified to be candidate immune-related prognostic genes. Transcription factors-immunogenes network was generated to explore the interactions among these candidate genes. According to the results of Lasso and multivariate Cox regression analysis, we established an IRPS and confirmed its stability and reliability in ICGC dataset. The IRPS was significantly associated with advanced clinicopathological characteristics. Both Cox regression analyses revealed that the IRPS could be an independent risk factor influencing the prognosis of HCC patients. The relationships between the IRPS and infiltration immune cells demonstrated that the IRPS was associated with immune cell infiltration. GSEA identified significantly enriched pathways, which might assist in elucidating the biological mechanisms of the IRPS. Furthermore, a nomogram was constructed to estimate the survival probability of HCC patients. Conclusions: The IRPS was effective for predicting prognosis of HCC patients, which might serve as novel prognostic and therapeutic biomarkers for HCC.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qingmiao Shi ◽  
Chen Xue ◽  
Xin Yuan ◽  
Yuting He ◽  
Zujiang Yu

Abstract Hepatocellular carcinoma (HCC) ranks fourth in cancer-related mortality worldwide. N1-methyladenosine (m1A), a methylation modification on RNA, is gaining attention for its role across diverse biological processes. However, m1A-related regulatory genes expression, its relationship with clinical prognosis, and its role in HCC remain unclear. In this study, we utilized The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) database to investigate alterations within 10 m1A-related regulatory genes and observed a high mutation frequency (23/363). Cox regression analysis and least absolute shrinkage and selection operator were used to explore the association between m1A-related regulatory genes expression and HCC patient survival and identified four regulators that were remarkably associated with HCC patient prognosis. Additionally, an independent cohort from International Cancer Genome Consortium was studied to validate our discoveries and found to be consistent with those in the TCGA dataset. In terms of mechanism, gene set enrichment analysis linked these four genes with various physiological roles in cell division, the MYC pathway, protein metabolism, and mitosis. Kyoto Encyclopedia of Genes and Genomes analysis revealed that PI3K/Akt signaling pathway had potential relevance to m1A-related regulatory genes in HCC. These findings indicate that m1A-related regulatory genes may play crucial roles in regulating HCC progression and be exploited for diagnostic and prognostic purposes.


2021 ◽  
Author(s):  
Jingdun Xie ◽  
Zhenhua Qi ◽  
Xiaolin Luo ◽  
Fang Yan ◽  
Wei Xing ◽  
...  

Background: N6-Methyladenosine (m6A) RNA methylation of eukaryotic mRNA is involved in the progression of various tumors. We aimed to investigate m6A-related genes and m6A regulators in hepatocellular carcinoma (HCC) and their association with prognosis in HCC.Methods: We downloaded liver cancer sample data from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium database. A total of 21 m6A regulators and 1258 m6A-related genes were then analyzed by consensus clustering, Spearman&#x2019;s correlation, GO, KEGG, LASSO Cox regression, and univariate Cox regression analyses. Finally, we constructed a risk prognostic model.Results: We obtained 192 candidate m6A-related genes and 3 m6A regulators, including YTHDF1, YTHDF2, and YTHDC1. The expression of these genes and regulators differed significantly in different stages of HCC. Based on Cox regression analysis, 19 of 98 m6A-related prognostic genes were obtained to construct a risk score model. The 1- and 3-year area under the curves (AUCs) among HCC patients were greater than 0.7. Finally, based on analysis of mutation differences between high- and low-risk score groups, we determined that TP53 had the highest mutation frequency in the high-risk HCC patient group, whereas titin (TTN) had the highest mutation frequency in the low-risk HCC patient group.Conclusion: This study comprehensively analyzed m6A regulators and m6A-related genes through an integrated bioinformatic analysis, including expression, clustering, protein–protein interaction, and prognosis, thus providing novel insights into the roles of m6A regulators and m6A-related genes in HCC.


2020 ◽  
Author(s):  
Wen Ye ◽  
Zhehao Shi ◽  
Zhongjing Zhang ◽  
Yi Zhou ◽  
Bicheng Chen ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is the most common and deadly type of liver cancer. Autophagy is the process of transporting damaged or aging cellular components into lysosomes for digestion and degradation. There is an accumulative evidence implies that autophagy is a key factor of the progression of cancer. The aim of this study was to determine a panel of a novel autophagy-related prognostic marker for liver cancer. Methods We conducted a comprehensive analysis of ARGs expression profiles and corresponding clinical information based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database. The univariate Cox proportional regression model was used to screen candidate autophagy-related prognostic genes. In addition, the multivariate Cox proportional regression model were helped to prove five key prognostic autophagy-related genes (ATIC, BAX, BIRC5, CAPNS1 and FKBP1A), which were used to construct prognostic signature. Results Based on the prognostic signature, liver cancer patients were significantly divided into high-risk and low-risk groups in terms of overall survival (OS). Further multivariate Cox regression analysis indicated that the prognostic signature remained as an independent prognostic factor for OS. The prognostic signature in possession of a better Area Under Curves (AUC) has a better performance in predicting the survival of patients with HCC, compared with other clinical parameters. Conclusion This study provides a prospective biomarker for monitoring the outcomes in the patients with HCC.


2020 ◽  
Author(s):  
Xinxin Xia ◽  
Hui Liu ◽  
Yuejun Li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. The immune system plays vital roles in HCC initiation and progression. The present study aimed to construct an immune-gene related prognostic signature (IRPS) for predicting the prognosis of HCC patients. Methods: Gene expression data were retrieved from The Cancer Genome Atlas database. Univariate Cox regression analysis was carried out to identify differentially expressed genes that associated with overall survival. The IRPS was established via Lasso and multivariate Cox regression analysis. Both Cox regression analyses were conducted to determine the independent prognostic factors for HCC. Next, the association between the IRPS and clinical-related factors were evaluated. The prognostic values of the IRPS were further validated using the International Cancer Genome Consortium (ICGC) dataset. Gene set enrichment analyses (GSEA) were conducted to understand the biological mechanisms of the IRPS. Results: A total of 62 genes were identified to be candidate immune-related prognostic genes. Transcription factors-immunogenes network was generated to explore the interactions among these candidate genes. According to the results of Lasso and multivariate Cox regression analysis, we established an IRPS and confirmed its stability and reliability in ICGC dataset. The IRPS was significantly associated with advanced clinicopathological characteristics. Both Cox regression analyses revealed that the IRPS could be an independent risk factor influencing the prognosis of HCC patients. The relationships between the IRPS and infiltration immune cells demonstrated that the IRPS was associated with immune cell infiltration. GSEA identified significantly enriched pathways, which might assist in elucidating the biological mechanisms of the IRPS. Furthermore, a nomogram was constructed to estimate the survival probability of HCC patients. Conclusions: The IRPS was effective for predicting prognosis of HCC patients, which might serve as novel prognostic and therapeutic biomarkers for HCC.


2021 ◽  
Author(s):  
Li Wang ◽  
Jialin Qu ◽  
Man Jiang ◽  
Na Zhou ◽  
Zhixuan Ren ◽  
...  

Abstract Background Iron is a nutrient essential for hemoglobin synthesis, DNA synthesis, and energy metabolism in all mammals. Iron metabolic involved in numerous types of cancers including hepatocellular cancer. In this study, we aim to identify prognostic model that based on iron metabolic-related genes that could effectively predict the prognosis for HCC patients. Methods The RNA microarray and clinical data of HCC patients that obtained from The Cancer Genome Atlas (TCGA) database. We identify the clusters of HCC patients with different clinical outcome performed by consensus clustering analysis. Four iron metabolic-related genes (FLVCR1, FTL, HIF1A, HMOX1) were screen for prognostic model by performed the Cox regression analysis. The efficacy of prognostic model was validated by the International Cancer Genome Consortium (ICGC) database. Meantime, the expressions value of FLVCR1, FTL, HIF1A, HMOX1 was performed using Oncomine database, the Human Protein Atlas and Kaplan Meier-plotter. Result The patients with low-risk score have better prognosis than high risk score both in TCGA cohort and ICGC cohort. The prognostic model showed well performance for predicting the prognosis of HCC patients than other clinicopathological parameters by OS-related ROC curves. Conclusion Our survival models that based on Iron metabolic can be independent risk factors for hepatocellular carcinoma patients.


2021 ◽  
Author(s):  
Yanyao Deng ◽  
Hai Hu ◽  
Le Xiao ◽  
Ting Cai ◽  
Wenzhe Gao ◽  
...  

Abstract Background: Epithelial-Mesenchymal Transition (EMT) can promote carcinoma progression by multiple mechanisms, many studies demonstrated the invasiveness of pancreatic adenocarcinoma (PAAD) associated with the EMT, but how it acts in a lncRNA dependent manner is unclear. Methods: We investigated 146 PAAD samples from The Cancer Genome Atlas (TCGA) and 92 samples from the International Cancer Genome Consortium (ICGC). Gene set variation analysis (GSVA) and weighted correlation network analysis (WGCNA) were applied to explore the EMT related long non-coding RNAs (EMTlnc). Univariate Cox regression analysis was performed to screen their prognostic roles in PAAD patients. Least absolute shrinkage and selection operator (LASSO) Cox regression was used to establish an EMT-related lncRNA prognostic signature (EMT-LPS). We also established a competing endogenous RNA (ceRNA) network. Results: 33 prognostic EMTlnc were identified as prognostic lncRNAs and an EMT-LPS were established. We divided the patients into low- and high-risk subgroups according to corresponding risk scores. The EMT-LPS showed a powerful prognostic predicting ability in stratification analysis. Principal component analysis (PCA) showed the low- and high-risk subgroups had distinct EMT status. Enrichment analysis indicated malignancy correlated biological processes, pathways and hallmarks were more common in the high-risk subgroup. Moreover, we constructed a nomogram that had a strong ability to forecast the overall survival (OS) of the PAAD patients in both datasets. Conclusion: EMT-LPS are important factors in the carcinoma progression of PAAD and may help in decision making regarding the choice of prognosis assessment and provide us clues to design the new drugs for PAAD.


Sign in / Sign up

Export Citation Format

Share Document