scholarly journals Correlation of Respiratory Aerosols with Metabolic Carbon Dioxide 

Author(s):  
Niklas Kappelt ◽  
Hugo S. Russell ◽  
Szymon Kwiatkowski ◽  
Alireza Afshari ◽  
Matthew S. Johnson

Abstract Respiratory Aerosols from breathing and talking have found wide acceptance as a transmission route for viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous studies have found particles with diameters ranging from 10 nm to 145 µm, exhibited from different regions in the respiratory system. We present the first chamber study, in which respiratory aerosols have been simultaneously measured with carbon dioxide (CO2) to establish the correlation between the two concentrations. CO2 concentrations are easily available through low-cost sensors and could be used to estimate viral exposure through this correlation, whereas source-specific aerosol measurements are complicated and not possible with low cost sensors. The increase in both PM10 and CO2 was linear over ten minutes in a 2 m3 chamber for all participants, suggesting a strong correlation. On average, talking released more particles than breathing, with 14,600 ± 16,800 min-1 (one-σ standard deviation) and 6,210 ± 5,630 min-1 on average, respectively, while CO2 increased with 139 ± 33 ppm min-1 during talking and 143 ± 29 ppm min-1 during breathing. Assuming a typical viral load of 7 × 106 RNA copies per ml of oral fluid, ten minutes of talking and breathing are estimated to produce 7 and 16 suspended RNA copies, respectively, correlating to a CO2 concentration of around 1.800 ppm in a 2 m3 chamber. This provides a strong argument for keeping indoor spaces well ventilated and shows how CO2 concentrations, measured with low-cost sensors, could be used as a proxy for viral exposure.

2021 ◽  
Vol 13 (21) ◽  
pp. 12203
Author(s):  
Niklas Kappelt ◽  
Hugo Savill Russell ◽  
Szymon Kwiatkowski ◽  
Alireza Afshari ◽  
Matthew Stanley Johnson

Respiratory aerosols from breathing and talking are an important transmission route for viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous studies have found that particles with diameters ranging from 10 nm to 145 μm are produced from different regions in the respiratory system and especially smaller particles can remain airborne for long periods while carrying viral RNA. We present the first study in which respiratory aerosols have been simultaneously measured with carbon dioxide (CO2) to establish the correlation between the two concentrations. CO2 concentrations are easily available through low-cost sensors and could be used to estimate viral exposure through this correlation, whereas source-specific aerosol measurements are complicated and not possible with low-cost sensors. The increase in both respiratory aerosols and CO2 was linear over ten minutes in a 2 m3 chamber for all participants, suggesting a strong correlation. On average, talking released more particles than breathing, with 14,600 ± 16,800 min−1 (one-σ standard deviation) and 6210 ± 5630 min−1 on average, respectively, while CO2 increased with 139 ± 33 ppm min−1 during talking and 143 ± 29 ppm min−1 during breathing. Assuming a typical viral load of 7×106 RNA copies per mL of oral fluid, ten minutes of talking and breathing are estimated to produce 1 and 16 suspended RNA copies, respectively, correlating to a CO2 concentration of around 1800 ppm in a 2 m3 chamber. However, viral loads can vary by several orders of magnitude depending on the stage of the disease and the individual. It was therefore concluded that, by measuring CO2 concentrations, only the number and volume concentrations of released particles can be estimated with reasonable certainty, while the number of suspended RNA copies cannot.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6204
Author(s):  
Naveed Salman ◽  
Muhammad Waqas Khan ◽  
Michael Lim ◽  
Amir Khan ◽  
Andrew H. Kemp ◽  
...  

The use of cloth face coverings and face masks has become widespread in light of the COVID-19 pandemic. This paper presents a method of using low cost wirelessly connected carbon dioxide (CO2) sensors to measure the effects of properly and improperly worn face masks on the concentration distribution of exhaled breath around the face. Four types of face masks are used in two indoor environment scenarios. CO2 as a proxy for exhaled breath is being measured with the Sensirion SCD30 CO2 sensor, and data are being transferred wirelessly to a base station. The exhaled CO2 is measured in four directions at various distances from the head of the subject, and interpolated to create spatial heat maps of CO2 concentration. Statistical analysis using the Friedman’s analysis of variance (ANOVA) test is carried out to determine the validity of the null hypotheses (i.e., distribution of the CO2 is same) between different experiment conditions. Results suggest CO2 concentrations vary little with the type of mask used; however, improper use of the face mask results in statistically different CO2 spatial distribution of concentration. The use of low cost sensors with a visual interpolation tool could provide an effective method of demonstrating the importance of proper mask wearing to the public.


2013 ◽  
Vol 85 (2) ◽  
pp. 823-831 ◽  
Author(s):  
ALOISIO COELHO JUNIOR ◽  
JOSE R.P. PARRA

Eggs of Anagasta kuehniella (Zeller 1879) are widely used for mass rearing of Trichogramma spp. and other parasitoids and predators, largely commercialized in many countries. The aim of this study is to evaluate the effect of carbon dioxide (CO2) originated from larval metabolism on the biological parameters of A. kuehniella. For that purpose, we assess the production of carbon dioxide (CO2) per rearing tray of A. kuehniella and the effect of CO2 on the viability of egg-to-adult period and oviposition of A. kuehniella. Results allow to estimate that a rearing tray, containing 10,000 larvae between the 4th and 5th instars, produces an average of 30.67 mL of CO2 per hour. The highest egg production of A. kuehniella was obtained when the larvae were kept in rooms with lower concentration of CO2 (1,200 parts per million - ppm), producing 23% more eggs than in rooms with higher CO2 concentrations. In rooms with high density of trays (70 trays/room), CO2 concentration exceeded 4,400 ppm. The viability of the egg-to-adult period was not influenced by carbon dioxide.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
GOURI SHANKAR GIRI ◽  
S. V. S. RAJU ◽  
S. D. MOHAPATRA ◽  
MUNMUN MOHAPATRA

An experiment was conducted at Research Farm, National Rice Research Institute, Cuttack, Odisha, India to quantify the effect of elevated carbon dioxide (CO2) concentrations on the biology and morphometric parameters of yellow stem borer (Scirpophaga incertulas, Pyralidae, Lepidoptera). Yellow stem borer is one of the major pest of rice in the whole rice growing regions of South East Asia. The effect of three carbon dioxide concentrations i.e. 410 ppm (ambient), 550 ppm and 700 ppm on the duration of the developmental period as well as morphometric parameters of each stage of the lifecycle of the pest was analysed. It was found that, there was an increase in the duration of the developmental period of each stage of life cycle as the concentration of CO2 increases. However, the life span of the adult moth was significantly lower under the elevated CO2 concentrations when compared with ambient CO2 concentration. Morphometric parameters viz., mean length, width and weight of each larval instar, pupa and adult were found to be significantly higher in elevated concentrations of CO2 as compared to ambient concentration.


Author(s):  
R A Angelova ◽  
D G Markov ◽  
I Simova ◽  
R Velichkova ◽  
P Stankov

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6714
Author(s):  
Rebecca A. Sugrue ◽  
Chelsea V. Preble ◽  
Thomas W. Kirchstetter

The exhaust plume capture method is a commonly used approach to measure pollutants emitted by in-use heavy-duty diesel trucks. Lower cost sensors, if used in place of traditional research-grade analyzers, could enable wider application of this method, including use as a monitoring tool to identify high-emitting trucks that may warrant inspection and maintenance. However, low-cost sensors have for the most part only been evaluated under ambient conditions as opposed to source-influenced environments with rapidly changing pollutant concentrations. This study compared black carbon (BC) emission factors determined using different BC and carbon dioxide (CO2) sensors that range in cost from $200 to $20,000. Controlled laboratory experiments show that traditional zero and span steady-state calibration checks are not robust indicators of sensor performance when sampling short duration concentration peaks. Fleet BC emission factor distributions measured at two locations at the Port of Oakland in California with 16 BC/CO2 sensor pairs were similar, but unique sensor pairs identified different high-emitting trucks. At one location, the low-cost PP Systems SBA-5 agreed on the classification of 90% of the high emitters identified by the LI-COR LI-7000 when both were paired with the Magee Scientific AE33. Conversely, lower cost BC sensors when paired with the LI-7000 misclassified more than 50% of high emitters when compared to the AE33/LI-7000. Confidence in emission factor quantification and high-emitter identification improves with larger integrated peak areas of CO2 and especially BC. This work highlights that sensor evaluation should be conducted under application-specific conditions, whether that be for ambient air monitoring or source characterization.


2020 ◽  
Vol 17 (9) ◽  
pp. 2487-2498 ◽  
Author(s):  
Marcus B. Wallin ◽  
Joachim Audet ◽  
Mike Peacock ◽  
Erik Sahlée ◽  
Mattias Winterdahl

Abstract. Headwater streams are known to be hotspots for carbon dioxide (CO2) emissions to the atmosphere and are hence important components in landscape carbon balances. However, surprisingly little is known about stream CO2 dynamics and emissions in agricultural settings, a land use type that globally covers ca. 40 % of the continental area. Here we present hourly measured in situ stream CO2 concentration data from a 11.3 km2 temperate agricultural headwater catchment covering more than 1 year (in total 339 d excluding periods of ice and snow cover). The stream CO2 concentrations during the entire study period were generally high (median 3.44 mg C L−1, corresponding to partial pressures (pCO2) of 4778 µatm) but were also highly variable (IQR = 3.26 mg C L−1). The CO2 concentration dynamics covered a variety of different timescales from seasonal to hourly, with an interplay of hydrological and biological controls. The hydrological control was strong (although with both positive and negative influences dependent on season), and CO2 concentrations changed rapidly in response to rainfall and snowmelt events. However, during growing-season base flow and receding flow conditions, aquatic primary production seemed to control the stream CO2 dynamics, resulting in elevated diel patterns. During the dry summer period, rapid rewetting following precipitation events generated high CO2 pulses exceeding the overall median level of stream CO2 (up to 3 times higher) observed during the whole study period. This finding highlights the importance of stream intermittency and its effect on stream CO2 dynamics. Given the observed high levels of CO2 and its temporally variable nature, agricultural streams clearly need more attention in order to understand and incorporate these considerable dynamics in large-scale extrapolations.


2011 ◽  
Vol 403-408 ◽  
pp. 3769-3774 ◽  
Author(s):  
Asif Mirza ◽  
Nor Hisham Hamid ◽  
Mohd Haris Md Khir ◽  
Khalid Ashraf ◽  
M.T. Jan ◽  
...  

This paper reports design, modeling and simulation of MEMS based sensor working in dynamic mode with fully differential piezoresistive sensing for monitoring the concentration of exhaled carbon dioxide (CO2) gas in human breath called capnometer. CO2 being a very important biomarker, it is desirable to extend the scope of its monitoring beyond clinical use to home and ambulatory services. Currently the scope of capnometers and its adaption is limited by high cost, large size and high power consumption of conventional capnometers . In recent years, MEMS based micro resonant sensors have received considerable attention due to their potential as a platform for the development of many novel physical, chemical, and biological sensors with small size, low cost and low power requirements. The sensor is designed using 0.35 micron CMOS technology. CoventorWare and MATLAB have been used as simulation software. According to the developed model and simulation results the resonator has resonant frequency 57393 Hz and mass sensitivity of 3.2 Hz/ng. The results show that the longitudinal relative change of resistance is 0.24%/µm while the transverse relative change of resistance is -0.03%/µm.


Volume 2 ◽  
2004 ◽  
Author(s):  
Madhuri Jakkaraju ◽  
Vasudha Patri

I. C. Engines consume large amounts of fossil fuel emitting harmful pollutants like carbon monoxide (CO), unburnt hydrocarbons (UBHC), and oxides of nitrogen (NOx). By using a catalytic converter (CC), the carbon monoxide, hydrocarbon emissions can be transformed into less harmful carbon dioxide (CO2) & water vapor (H2O). Currently available CC’s are using costly noble metals like platinum (pt), palladium (pd), rhodium (rh) etc., hence making them expensive. This paper deals with the use of low-cost palletized silver coated alumina as the catalyst element in a CC. In this study, alumina and silver were used in the ratio of 10:1. All tests have been conducted on a stationary S.I. Engine at a constant speed of 1500 r.p.m with and without CC. Also, the performance of the palletized CC in combination with promoters like Bismuth, Cerium and Lanthanum was tested which have shown better results than silver alone as the coating element. It has been experimentally determined that the CO emissions have dropped from 7.25 (% vol) to 3.03(% vol) and the HC values have reduced from 350 ppm to 190 ppm.


2019 ◽  
Author(s):  
Kamau Wright ◽  
Robert Galvez

Abstract Simulations and experiments are conducted to model, simulate, test and demonstrate the effect of plasma discharges on decomposition of carbon dioxide (CO2). A pin-to-plane discharge is employed in gas samples containing CO2. A high voltage plasma system is used which was previously shown to be able to decrease CO2 concentration in gas samples. The discharge is modeled and described, including monitoring electrical parameters such as current and voltage. The present study investigated plasma decomposition of carbon dioxide experimentally, and through simulation. A plasma micro-discharge was utilized to better understand plasma-CO2 interactions. Enhancements are suggested to help increase the efficiency and yield of the plasma-CO2 decomposition process. Gas samples are analyzed over time using a CO2 meter.


Sign in / Sign up

Export Citation Format

Share Document