scholarly journals Bioinformatics Analysis of Differentially Expressed Genes Involved in Irritable Bowel Syndrome With Diarrhea

Author(s):  
Yuan-Mei Lou ◽  
Yan-Zhi Ge ◽  
Wen Chen ◽  
Lin Su ◽  
Jia-Qi Zhang ◽  
...  

Abstract Purpose: Irritable bowel syndrome with diarrhea (IBS-D) is a common functional gastrointestinal disorder around the world. However, the molecular mechanisms of IBS-D are still not well understood. This study was designed to identify key biomarkers and immune infiltration in the rectal mucosa of IBS-D by bioinformatics analysis. Methods: The gene expression profiles of GSE36701 were downloaded from the GEO database. The differentially expressed genes (DEGs) were identified and functional enrichment and pathway analyses were performed. Using STRING and Cytoscape, protein-protein interaction (PPI) networks were constructed and core genes were identified. Subsequently, 22 immune cell types of IBS-D tissues were explored by the Cell type Identification by Estimating Relative Subsets of RNA Transcripts. Finally, the co-expression network of DEGs was estimated by the weigh gene co-expression network analysis method to identify IBS-D-related modules and deeply hub genes. Results: 224 up-regulated and 171 down-regulated genes in IBS-D patients: Our analysis indicated that several DEGs might play crucial roles in IBS-D, such as CDC20, UBE2C, AURKA, CDC26, CKS1B and PSMB3. Later, we found that immune infiltrating cells such as T cells CD4 memory resting, M2 macrophages are crucial in IBS-D progression. In the end, a total of 9 co-expression gene modules were calculated and the black module was found to have the highest correlation. 15 hub genes were identified both in DEGs and the black module. Conclusions: This study identified molecular mechanisms and a series of candidate genes as well as significant pathways from the bioinformatics network, which may provide a diagnostic method and therapeutic targets for IBS-D.

2020 ◽  
Author(s):  
Yanjie Han ◽  
Xinxin Li ◽  
Jiliang Yan ◽  
Chunyan Ma ◽  
Xin Wang ◽  
...  

Abstract Background: Melanoma is the most deadly tumor in skin tumors and is prone to distant metastases. The incidence of melanoma has increased rapidly in the past few decades, and current trends indicate that this growth is continuing. This study was aimed to explore the molecular mechanisms of melanoma pathogenesis and discover underlying pathways and genes associated with melanoma.Methods: We used high-throughput expression data to study differential expression profiles of related genes in melanoma. The differentially expressed genes (DEGs) of melanoma in GSE15605, GSE46517, GSE7553 and the Cancer Genome Atlas (TCGA) datasets were analyzed. Differentially expressed genes (DEGs) were identified by paired t-test. Then the DEGs were performed cluster and principal component analyses and protein–protein interaction (PPI) network construction. After that, we analyzed the differential genes through bioinformatics and got hub genes. Finally, the expression of hub genes was confirmed in the TCGA databases and collected patient tissue samples.Results: Total 144 up-regulated DEGs and 16 down-regulated DEGs were identified. A total of 17 gene ontology analysis (GO) terms and 11 pathways were closely related to melanoma. Pathway of pathways in cancer was enriched in 8 DEGs, such as junction plakoglobin (JUP) and epidermal growth factor receptor (EGFR). In the PPI networks, 9 hub genes were obtained, such as loricrin (LOR), filaggrin (FLG), keratin 5 (KRT5), corneodesmosin (CDSN), desmoglein 1 (DSG1), desmoglein 3 (DSG3), keratin 1 (KRT1), involucrin (IVL) and EGFR. The pathway of pathways in cancer and its enriched DEGs may play important roles in the process of melanoma. The hub genes of DEGs may become promising melanoma candidate genes. Five key genes FLG, DSG1, DSG3, IVL and EGFR were identified in the TCGA database and melanoma tissues.Conclusions: The results suggested that FLG, DSG1, DSG3, IVL and EGFR might play important roles and potentially be valuable in the prognosis and treatment of melanoma.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng Zhang ◽  
Bingye Zhang ◽  
Di Meng ◽  
Chunlin Ge

Abstract Background The incidence of cholangiocarcinoma (CCA) has risen in recent years, and it has become a significant health burden worldwide. However, the mechanisms underlying tumorigenesis and progression of this disease remain largely unknown. An increasing number of studies have demonstrated crucial biological functions of epigenetic modifications, especially DNA methylation, in CCA. The present study aimed to identify and analyze methylation-regulated differentially expressed genes (MeDEGs) involved in CCA tumorigenesis and progression by bioinformatics analysis. Methods The gene expression profiling dataset (GSE119336) and gene methylation profiling dataset (GSE38860) were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified using the limma packages of R and GEO2R, respectively. The MeDEGs were obtained by overlapping the DEGs and DMGs. Functional enrichment analyses of these genes were then carried out. Protein–protein interaction (PPI) networks were constructed using STRING and visualized in Cytoscape to determine hub genes. Finally, the results were verified based on The Cancer Genome Atlas (TCGA) database. Results We identified 98 hypermethylated, downregulated genes and 93 hypomethylated, upregulated genes after overlapping the DEGs and DMGs. These genes were mainly enriched in the biological processes of the cell cycle, nuclear division, xenobiotic metabolism, drug catabolism, and negative regulation of proteolysis. The top nine hub genes of the PPI network were F2, AHSG, RRM2, AURKB, CCNA2, TOP2A, BIRC5, PLK1, and ASPM. Moreover, the expression and methylation status of the hub genes were significantly altered in TCGA. Conclusions Our study identified novel methylation-regulated differentially expressed genes (MeDEGs) and explored their related pathways and functions in CCA, which may provide novel insights into a further understanding of methylation-mediated regulatory mechanisms in CCA.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Binfeng Liu ◽  
Ang Li ◽  
Hongbo Wang ◽  
Jialin Wang ◽  
Gongwei Zhai ◽  
...  

The Corneal wound healing results in the formation of opaque corneal scar. In fact, millions of people around the world suffer from corneal scars, leading to loss of vision. This study aimed to identify the key changes of gene expression in the formation of opaque corneal scar and provided potential biomarker candidates for clinical treatment and drug target discovery. We downloaded Gene expression dataset GSE6676 from NCBI-GEO, and analyzed the Differentially Expressed Genes (DEGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses, and protein-protein interaction (PPI) network. A total of 1377 differentially expressed genes were identified and the result of Functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) identification and protein-protein interaction (PPI) networks were performed. In total, 7 hub genes IL6 (interleukin-6), MMP9 (matrix metallopeptidase 9), CXCL10 (C-X-C motif chemokine ligand 10), MAPK8 (mitogen-activated protein kinase 8), TLR4 (toll-like receptor 4), HGF (hepatocyte growth factor), EDN1 (endothelin 1) were selected. In conclusion, the DEGS, Hub genes and signal pathways identified in this study can help us understand the molecular mechanism of corneal scar formation and provide candidate targets for the diagnosis and treatment of corneal scar.


2021 ◽  
Author(s):  
Jun-wei LIANG ◽  
Wen-jun BAI ◽  
Xiao-yan WANG ◽  
Li-li CHI

Abstract Background:Many studies on long chain non-coding RNAs (lncRNAs) are published in recent years. But the roles of lncRNAs in diarrhea irritable bowel syndrome (IBS-D) are still unclear and should be further examined. The present work focused on determining the molecular mechanisms underlying lncRNAs regulation in IBS-D on the basis of the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network.Methods:This study collected the mRNAs (GSE36701) expression data within human tissue samples with IBS-D group and normal group based on Gene Expression Omnibus (GEO) database and collected the differentially expressed lncRNAs (DELs) and differentially expressed miRNAs (DEmiRs) based on PubMed.Functional enrichment analysis of DEGs was performed on the DAVID database. Then the interaction network was constructed and visualized using STRING database and Cytoscape.Results: This study identified 3192 DEmRNAs (1437 with up-regulation and 1755 with down-regulation),29 DEmiRs (18 upregulated and 11 downregulated)and 2 DELs(one upregulated and one downregulated) between IBS-D and control samples.Furthermore,we constructed a lncRNA-miRNA-mRNA network through two DELs (lncRNA TUG1 with up-regulation and lncRNA H19 with down-regulation), four DemiRs (hsa-miR-148a-3p,hsa-miR-342-3p,hsa-miR-149-5p with up-regulation and hsa-miR-219a-5p with down-regulation)and 24 DEGs (4 with up-regulation and 20 with down-regulation) with 42 axes. Simultaneously, we conducted functional enrichment and pathway analyses on genes within the as-constructed ceRNA network. According to our PPI/ceRNA network and functional enrichment analysis results, two critical genes were found (BCL2L11 and QKI). Conclusion:In conclusion, the ceRNA interaction axis we identified is a potentially critical target for treating IBS-D.BCL2L11 axis(LncH19-hsa-miR-148a-3p-BCL2L11) may via interaction with PI3K/AKT pathways in IBS-D.Our results shed more lights on the possible pathogenic mechanism in IBS-D using a lncRNA-associated ceRNA network.


2021 ◽  
Author(s):  
Han Wang ◽  
Jieqing Chen ◽  
Xinhui Liao ◽  
Yang Liu ◽  
Aifa Tang ◽  
...  

Abstract BACKGROUND and OBJECTIVE: A better understanding of the molecular mechanisms underlying bladder cancer is necessary to identify candidate therapeutic targets. METHODS: We screened for genes associated with bladder cancer progression and prognosis. Publicly available expression data were obtained from TCGA and GEO to identify differentially expressed genes (DEGs) between bladder cancer and normal bladder tissues. Weighted co-expression networks were constructed, and Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Associations between hub genes and immune infiltration and immune therapy were evaluated. RESULTS: 3461 DEGs in TCGA-BC and 1069 DEGs in the GSE dataset were identified, with 87 overlapping differentially expressed genes between the bladder cancer and normal bladder groups. Hub genes in the tumour group were mainly enriched for cell proliferation-related GO terms and KEGG pathways, while hub genes in the normal group were related to the synthesis and secretion of neurotransmitters. PPI networks for the genes identified in the normal and tumour groups were constructed. Based on a survival analysis, CDH19, RELN, PLP1, and TRIB3 were significantly associated with prognosis (P < 0.05). Four hub genes were significantly enriched in the MAPK signalling pathway, VEGF signalling pathway, WNT signalling pathway, cell cycle, and P53 signalling pathway based on a gene set enrichment analysis; these genes were associated with immune infiltration levels in bladder cancer. CONCLUSIONS: CDH19, RELN, PLP1, and TRIB3 may play important roles in the development of bladder cancer and are potential therapeutic and prognostic targets.


2020 ◽  
Author(s):  
Yanzhi Ge ◽  
Li Zhou ◽  
Zuxiang Chen ◽  
Yingying Mao ◽  
Ting Li ◽  
...  

Abstract Background The disability rate associated with rheumatoid arthritis (RA) ranks high among inflammatory joint diseases. However, the cause and potential molecular events are as yet not clear. Here, we aimed to identify key genes and pathways involved in RA utilizing integrated bioinformatics analysis and uncover underlying molecular mechanisms. Materials and methods The expression profiles of GSE55235, GSE55457, GSE55584 and GSE77298 were downloaded from the Gene Expression Omnibus database, which contained 76 synovial membrane samples, including 49 RA samples and 27 controls. The microarray datasets were consolidated and differentially expressed genes (DEGs) were acquired and further analyzed by bioinformatics techniques. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs were performed using R (version 3.6.1), respectively. The protein-protein interaction (PPI) networks of DEGs were developed utilizing the STRING database. Results A total of 828 DEGs were recognized, with 758 up-regulated and 70 down-regulated. GO and KEGG pathway analyses demonstrated that these DEGs focused primarily on multifactorial binding, transcription activity, cytokin-cytokin receptor interaction and relevant signaling pathways. The 30 most firmly related genes among DEGs were identified from the PPI network. Conclusion This study shows that screening for DEGs and pathways utilizing integrated bioinformatics analyses could aid in the comprehension of the molecular mechanisms involved in RA development. In addition, our study provides valuable data for the effective prevention, diagnosis, treatment and rehabilitation of RA patients as well as providing potential targets for the treatment of RA.


2020 ◽  
Author(s):  
Yinchen Shen ◽  
Mo Li ◽  
Kun Liu ◽  
Xiaoyin Xu ◽  
Shaopin Zhu ◽  
...  

Abstract Background: Age-related macular degeneration (AMD) represents the leading cause of visual impairment in the aging population. The goal of this study was to identify aberrantly methylated-differentially expressed genes (MDEGs) in AMD and explore the involved pathways by integrated bioinformatic analysis. Methods: Data of expression profiling GSE29801 and methylation profiling GSE102952 were obtained from the Gene Expression Omnibus database. We analyzed differentially methylated genes and differentially expressed genes in R software. Functional enrichment and protein–protein interaction (PPI) network analysis were performed using R package and Search Tool for the Retrieval of Interacting Genes online database. Hub genes were identified using Cytoscape. Results: 827 and 592 genes showed high and low expression, respectively, in GSE29801; 4117 hyper-methylated genes and 511 hypo-methylated genes were detected in GSE102952. After overlapping, we categorized 153 genes as hyper-methylated, low-expression genes (Hyper-LGs) and 24 genes as hypo-methylated, high-expression genes (Hypo-HGs). Four Hyper-LGs ( CKB , PPP3CA , TGFB2 , SOCS2 ) overlapped with AMD risk genes in Public Health Genomics and Precision Health Knowledge Base. KEGG pathway enrichment analysis indicated Hypo-HGs were enriched in the calcium signaling pathway, whereas Hyper-LGs were enriched in sphingolipid metabolism. In GO analysis, Hypo-HGs were enriched in fibroblast migration, membrane raft, coenzyme binding, etc. Hyper-LGs were enriched in mRNA transport, nuclear speck, DNA binding, etc. In PPI networks analysis, 23 nodes and 2 edges were established from Hypo-HGs, and 151 nodes and 73 edges were established from Hyper-LGs. Hub genes ( DHX9 , MAPT , PAX6 ) showed the greatest overlap. Conclusion: This study revealed potentially aberrantly MDEGs and pathways in AMD, which may improve the understanding of this disease.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Haoming Li ◽  
Linqing Zou ◽  
Jinhong Shi ◽  
Xiao Han

Abstract Background Alzheimer’s disease (AD) is a fatal neurodegenerative disorder, and the lesions originate in the entorhinal cortex (EC) and hippocampus (HIP) at the early stage of AD progression. Gaining insight into the molecular mechanisms underlying AD is critical for the diagnosis and treatment of this disorder. Recent discoveries have uncovered the essential roles of microRNAs (miRNAs) in aging and have identified the potential of miRNAs serving as biomarkers in AD diagnosis. Methods We sought to apply bioinformatics tools to investigate microarray profiles and characterize differentially expressed genes (DEGs) in both EC and HIP and identify specific candidate genes and pathways that might be implicated in AD for further analysis. Furthermore, we considered that DEGs might be dysregulated by miRNAs. Therefore, we investigated patients with AD and healthy controls by studying the gene profiling of their brain and blood samples to identify AD-related DEGs, differentially expressed miRNAs (DEmiRNAs), along with gene ontology (GO) analysis, KEGG pathway analysis, and construction of an AD-specific miRNA–mRNA interaction network. Results Our analysis identified 10 key hub genes in the EC and HIP of patients with AD, and these hub genes were focused on energy metabolism, suggesting that metabolic dyshomeostasis contributed to the progression of the early AD pathology. Moreover, after the construction of an miRNA–mRNA network, we identified 9 blood-related DEmiRNAs, which regulated 10 target genes in the KEGG pathway. Conclusions Our findings indicated these DEmiRNAs having the potential to act as diagnostic biomarkers at an early stage of AD.


2021 ◽  
Author(s):  
Feifei Liu ◽  
Yu Wang ◽  
Wenxue Li ◽  
Diancheng Li ◽  
Yuwei Xin ◽  
...  

Abstract Background: Colorectal cancer (CRC) is one of the most common malignancies of the digestive system; the progression and prognosis of which are affected by a complicated network of genes and pathways. The aim of this study was to identify potential hub genes associated with the progression and prognosis of colorectal cancer (CRC).Methods: We obtained gene expression profiles from GEO database to search differentially expressed genes (DEGs) between CRC tissues and normal tissue. Subsequently, we conducted a functional enrichment analysis, generated a protein–protein interaction (PPI) network to identify the hub genes, and analyzed the expression validation of the hub genes. Kaplan–Meier plotter survival analysis tool was performed to evaluate the prognostic value of hub genes expression in CRC patients.Results: A total of 370 samples, involving CRC and normal tissues were enrolled in this article. 283 differentially expressed genes (DEGs), including 62 upregulated genes and 221 downregulated genes between CRC and normal tissues were selected. We finally filtered out 6 hub genes, including INSL5, MTIM, GCG, SPP1, HSD11B2, and MAOB. In the database of TCGA-COAD, the mRNA expression of INSL5, MT1M, HSD11B2, MAOB in tumor is lower than that in normal; the mRNA expression of SPP1 in tumor is higher than that in normal. In the HPA database, the expression of INSL5, GCG, HSD11B2, MAOB in tumor is lower than that in normal tissues; the expression of SPP1 in the tumor is higher than that in normal tissues. Survival analysis revealed that INSL5, GCG, SPP1 and MT1M may serve as prognostic biomarkers in CRC. Conclusions: We screened out six hub genes to predict the occurrence and prognosis of patients with CRC using bioinformatics methods, which may provide new targets and ideas for diagnosis, prognosis and individualized treatment for CRC.


2021 ◽  
Author(s):  
Ke-Ying Fang ◽  
Gui-Ning Liang ◽  
Zhuo-Qing Zhuang ◽  
Yong-Xin Fang ◽  
Yu-Qian Dong ◽  
...  

Abstract Background: With the worldwide spread of COVID-19, people’s health and social order have been exposed to enormous risks. After encountering patients who test positive again after discharge, our study analyzed the pathogenesis to further assess the risk and possibility of virus reactivation.Methods: A separate microarray was acquired from the Integrated Gene Expression System (GEO), and its samples were divided into two groups: a “convalescent-RTP” group consisting of recovery and “retesting-positive” (RTP) patients (group CR) and a “health-RTP” group consisting of healthy control and RTP patients (group HR). The enrichment analysis was performed with R software, obtaining the gene ontology (GO) and Kyoto pluripotent stem cells (KEGG) of the genes and genomes. Subsequently, the protein–protein interaction (PPI) networks of each group were established and the hub genes were discovered using the cytoHubba plug-in.Results: In this study, 20 differentially expressed genes were identified, and 6622 genes were identified in the group CR, consisting of 5003 up-regulated and 1619 down-regulated genes. Meanwhile, 7335 genes were screened in the group HR, including 4323 up-regulated and 3012 down-regulated ones. The GO and KEGG analysis of the two groups revealed significant enrichment of these differentially expressed genes in pathways associated with immune response and apoptosis. In the PPI network constructed, 10 hub genes in group CR were identified, including TP53BP1, SNRPD1, SNRPD2, SF3B1, SNRNP200, MRPS16, MRPS9, CALM1, PPP2R1A, YWHAZ. Similarly, TP53BP1, RPS15, EFTUD2, MRPL16, MRPL17, MRPS14, RPL35A, MRPL32, MRPS6, POLR2G were selected as hub genes.Conclusions: Using the messenger ribonucleic acid (mRNA) expression data from GSE166253, we explore the pathogenesis of retesting positive in COVID-19 from the immune mechanism and molecular level. We found TP53BP1, SNRPD1 and SNRPD2 as hub genes in RTP patients. Hence, their regulatory pathway is vital to the management and prognostic prediction of RTP patients, rendering the further study of these hub genes necessary.


Sign in / Sign up

Export Citation Format

Share Document