Robust Stabilizing Control for Oscillatory Base Manipulators by Implicit Lyapunov Method

Author(s):  
Yufei Guo ◽  
Baolin Hou ◽  
Shengyue Xu ◽  
Ruilin Mei ◽  
Zhigang Wang ◽  
...  

Abstract Oscillatory base manipulators (OBMs) are a kind of mechanical systems suffering from unexpected base oscillations. The oscillations affect tremendously system stability. Various control methods have been explored, but most of them require measurement or prediction of the oscillations. This study is concerned with a novel OBM-the autoloader, which are used in modern, autonomous main battle tanks. The base oscillation of the autoloader is hard to be obtained in practice. Furthermore, control synthesis for autoloaders is complicated with intrinsic payload uncertainty and actuator saturation. To address these issues, a novel robust control scheme is proposed in this work relying on the implicit Lyapunov method. Moreover, a novel two-Degree-of-Freedom manipulator operating on a vibrating base is constructed to realize the proposed control. To the best of the authors' knowledge, this is the first study considering both control and hardware implementation for the OBM-like autoloaders. Experimental results demonstrate that, although without prior information of the base oscillation, the proposed controller exhibits good robustness against the base oscillation and payload uncertainty.

Author(s):  
Hong Zhan ◽  
Dianye Huang ◽  
Chenguang Yang

AbstractThis paper focuses on the optimal tracking control problem for robot systems with environment interaction and actuator saturation. A control scheme combined with admittance adaptation and adaptive dynamic programming (ADP) is developed. The unknown environment is modelled as a linear system and admittance controller is derived to achieve compliant behaviour of the robot. In the ADP framework, the cost function is defined with non-quadratic form and the critic network is designed with radial basis function neural network which introduces to obtain an approximate optimal control of the Hamilton–Jacobi–Bellman equation, which guarantees the optimal trajectory tracking. The system stability is analysed by Lyapunov theorem and simulations demonstrate the effectiveness of the proposed strategy.


Author(s):  
R. Vidyalakshmi ◽  
K. Gaayathry ◽  
N. Subha Lakshmi ◽  
S. Sundar ◽  
M. Suresh ◽  
...  

Robotica ◽  
2000 ◽  
Vol 18 (5) ◽  
pp. 505-512 ◽  
Author(s):  
D. T. Pham ◽  
Şahin Yildirim

This paper describes the design of an Internal Model Control (IMC) system for a planar two-degree-of-freedom robot. IMC was investigated as an alternative to the basic inverse control scheme which is difficult to implement. The proposed IMC system consisted of a forward internal neural model of the robot, a neural controller and a conventional feedback controller, all of which were realised easily. Both the neural model and the neural controller were based on recurrent networks which were trained using the backpropagation (BP) algorithm. The paper presents the results obtained with two types of recurrent networks as well as a conventional PID system.


Author(s):  
Fahimeh Kazempour ◽  
Eman Hammad ◽  
Abdallah Farraj ◽  
Deepa Kundur

Author(s):  
Sujay D. Kadam ◽  
Utsav Shah ◽  
Alrick D’Souza ◽  
Prajwal Gowdru Shanthamurthy ◽  
Nidhish Raj ◽  
...  

Abstract This paper introduces the swirling pendulum, a two-link, two degree-of-freedom mechanism which is under-actuated and has an unusual non-planar coupling with axis of rotation of the two links being perpendicular to each other. The swirling pendulum mechanism, while being simple to mathematically represent and easy to physically construct, exhibits several properties like loss of inertial coupling, loss of relative degree, multiple stable and unstable equilibrium points. These properties are unique as well as interesting from dynamics and controls point of view which make the swirling pendulum an excellent test-bed for testing various ideas in control and demonstrating several notions associated with systems and control theory. In this paper, we discuss the modeling of the swirling pendulum mechanism based on Lagrange’s equation along with an analysis related to equilibrium points and their stability. We also present simulation results for regulatory as well as tracking control tasks through simulations on a non-linear model using control methods like LQR, lead compensator and system inversion-based control to demonstrate the utility of the proposed mechanism in the area of systems, control and dynamics. Furthermore, we also discuss experimental results for controls applied on a real-time hardware setup.


Author(s):  
J. Yang ◽  
Y. Suematsu ◽  
S. Shimizu ◽  
Y. Okumura

Abstract This paper presents a robust active control for the vehicle engine-body system. The robust two degree-of-freedom (2DOF) controller is formed by combining a feedback (FB) controller with a feedforward (FF) controller. The feedback controller is designed by μ-synthesis to attenuate the effect of engine vibration disturbance by modeling the vehicle engine-body system as a nominal four degree-of-freedom vibration system with the parameter variations and the unmodeled dynamics. Based on filtered-X LMS algorithm, an active vibration controller is used as a feedforward controller to improve control performance further. To demonstrate the effectiveness of the control scheme, we have made some experiments in an experimental device, which is designed to imitate real vehicle engine-body system.


Sign in / Sign up

Export Citation Format

Share Document