scholarly journals Effects of Attraction of Vacuum Extractors of Different Materials and Pressures on the Fetal Head During Delivery

Author(s):  
Yu-Hsuan Chen ◽  
Kuo-Min Su ◽  
Ming-Tzu Tsai ◽  
Chi-Kung Lin ◽  
Cheng-Chang Chang ◽  
...  

Abstract PurposeIn some cases where operative deliveries are required with vacuum extractor, and obstetricians could choose the vacuum extractor to facilitate the process smoother and safer. However, there is no related biomechanical literature about the influences of vacuum extractors fabricated from different materials and pressures of vacuum on the fetal head. Hence, we utilized the finite element method to investigate the influences of vacuum extractors manufactured from different materials on the fetal head under various extractive pressures.MethodsFirst, the finite element analysis models of vacuum extractor and fetal head were established. The vacuum extractor model was designed as a hemispherical shape and we compared silicone rubber and stainless steel for the materials of vacuum extractor. Subsequently, four different vacuum pressures were applied as the factors for investigation—500-cm H2O, 600-cm H2O, 700-cm H2O, and 800-cm H2O. Finally, we observed and analyzed the reactive force on the fetal head, von Mises stress of vacuum extractor, and von Mises stress on the skull of fetal head to evaluate the influences of vacuum extractors of different materials under different pressures. ResultsThe results demonstrated that different vacuum pressures had only a slight difference of influences on the fetal head. The use of stainless-steel vacuum extractors caused a relatively larger reactive force (358.04–361.37 N) and stress (13.547–13.675 MPa) on the fetal head. ConclusionsNon-metallic or relatively softer materials could be selected when using a vacuum extractor for operative delivery to avoid complications such as scalp scratch, and even cephalohematoma and intracerebral hemorrhage.

2021 ◽  
Vol 11 (17) ◽  
pp. 8237
Author(s):  
Yu-Hsuan Chen ◽  
Kuo-Min Su ◽  
Ming-Tzu Tsai ◽  
Chi-Kang Lin ◽  
Cheng-Chang Chang ◽  
...  

Operative delivery requires the use of a vacuum extractor; obstetricians can choose the appropriate vacuum extractor to make the delivery process smoother and safer. However, there is no biomechanical literature focused on the imposed effects of a vacuum extractor prepared with different materials and vacuum pressure on the fetal head during the process of delivery. Therefore, we first established and performed the finite element analytical model to explore the influences of vacuum extractors manufactured from different materials on the fetal head under various extractive pressures. The model of the vacuum extractor was designed as a hemispherical shape, and the material of the vacuum extractor was composed of silicone rubber and stainless steel for comparison. Four different vacuum pressures (500 cm H2O, 600 cm H2O, 700 cm H2O, and 800 cm H2O) were applied as the factors for investigation. The reaction force on the fetal head, von Mises stress of vacuum extractor, and von Mises stress on the skull of fetal head were measured and analyzed to evaluate the effects. The results revealed that subtle divergent influences of different vacuum pressures were observed, and the stainless-steel vacuum extractor induced a larger reaction force (358.04–361.37 N), accompanied with stress (13.547–13.675 MPa), on the fetal head than non-metallic or relatively softer materials. The results provide a reliable basis for selecting proper vacuum extractor during operative delivery to avoid obstetrical complications, such as scalp scratch, cephalohematoma and even intracerebral hemorrhage.


2021 ◽  
Vol 2111 (1) ◽  
pp. 012015
Author(s):  
Nalendro Mataram ◽  
Sigiet Haryo Pranoto ◽  
Rizqi Ilmal Yaqin ◽  
Anis Siti Nurrohkayati ◽  
Noer Aden Bahry ◽  
...  

Abstract Recycling plastic waste can help reduce plastic waste, which is the world’s largest problem. The first solution is a plastic crusher machine, which converts plastic packaging into pellets, especially for plastics made from polyester, which is often used in bottle packaging. An integral part of the crushing machine is the crushing blade, which determines the design and analysis of the blade. The finite element analysis method is widely used in engineering analysis. Its results can provide useful information for the analysis of manufacturing processes. A rectangular blade and a star-shaped blade are the two types to consider. The analytical results obtained on the blade of the crusher machine in the rectangular shape that was given loads by 200 N, 400 N, and 600 N are 1.285 × 103 N/m2, 2.570 × 103 N/m2, and 3.855 × 103 N/m2, respectively. We obtained the displacements are 1.080 × 10-6 mm, 2.160 × 10-6 mm, and 3.241 × 10-6 mm, respectively. The maximum von mises stress result on consecutive star-shaped blades are 8.890 × 102 N/m2, 1.778 × 103 N/m2, and 2.667 × 103 N/m2. The displacement obtained are 1.211 × 10-6 mm, 2.422 × 10-6 mm, and 3.633 × 10-6 mm. The results of this analysis indicate that for the star blade, the shape is better than for the rectangular blade at the same time, and for the star blade, the stress is smaller than for the rectangular blade. Based on this simulation, the safety factor is 15, which means that it is more than 1, which means that it is safe.


Author(s):  
Amirhesam Amerinatanzi ◽  
Narges Shayesteh Moghaddam ◽  
Ahmadreza Jahadakbar ◽  
David Dean ◽  
Mohammad Elahinia

The most common method for mandibular reconstructive surgery is the use of a Ti-6Al-4V fixation device and a fibular double barrel graft. This highly stiff fixation hardware (E = 112 GPa) often shields the bone graft (E = 20 GPa) from carrying the load, which may result in bone resorption. Highly stiff Ti-6Al-4V fixation hardware is also likely to concentrate stress in the fixation plate or at screw threads, possibly leading to hardware cracking or screw pull-out. As a solution for that, we have proposed and studied the effect of using a low stiffness, porous NiTi fixation device [1–4]. Although the stress in the fixation device is increased, using such low stiffness fixation hardware, is preferable to have an even higher stress on the graft in order to minimize the risk of resorption or hardware failure. We assume that preloading screws allows them to better engage the fixation hardware with the plate and the surrounding bone and causes an increased von Mises stress. The fixation device can be patient-specific and additively manufactured, such that the shape would match the outer surface of the cortical bone. In this study, we modeled a healthy cadaver mandible via CT-derived 3D surface data. The mandible was virtually resected in the molar region (M1−3). The model simulated the result of reconstructive surgery under the highest chewing loading regime (i.e., 526 N on first right molar tooth [5, 6]) where reconstruction was done with either Ti-6Al-4V fixation hardware or patient specific, stiffness-matched, porous NiTi fixation hardware. The calibration of the material properties for this simulation was done using experimentally obtained data (DSC and compression tests) of Ni-rich NiTi bulk samples. The analyzed term in the finite element analysis was stress distribution in the cortical and cancellous bone. Porous NiTi fixation devices were also produced using Selective Laser Melting (SLM) using the geometry of the aforementioned cadaver mandible. In this paper we have studied the effect of additional torque or preload on the performance of the fixation plates. The finite element analysis demonstrated that applying a preload to the screws increased the stress on the bone. Under similar levels of applied preload, the porous NiTi fixation device showed an increased level of von Mises stress in the bone, particularly in the graft. Additionally, the analysis indicated the higher level of stress on the bone surrounding the screws for the case of using NiTi, which could contribute to increasing screw stability. The fabricated patient-specific fixation hardware not only matched the shape of cortical bone but also contained the level of porosity that defines the appropriate modulus of elasticity.


2016 ◽  
Vol 1133 ◽  
pp. 70-74
Author(s):  
Mohd Yusof Baharuddin ◽  
S. Hussain Salleh ◽  
Alias Mohd Nor ◽  
Muhammad Hisyam Lee ◽  
Ahmad Hafiz Zulkifly ◽  
...  

Total hip replacement (THR) is a flourishing orthopaedic surgery which generating billion of dollars of revenue. The cost associated with the fabrication of implants has been increasing year by year and this phenomenon has burdened the patient with extra charges. Consequently, this study will focus on designing an accurate implant via implementing the reverse engineering of three dimensional morphological study based on a particular population. By using the finite element analysis, this study will assist to predict the outcome and could become a useful tool for pre-clinical testing of newly designed implant. A prototype is then fabricated using 316L stainless steel by applying investment casting techniques which reduce manufacturing cost without jeopardizing implant quality. The finite element analysis showed the maximum von Mises stress was 66.88 MPa proximally with a safety factor of 2.39 against endosteal fracture, and micromotion was 4.73 μm which promotes osseointegration. This method offers a fabrication process of cementless femoral stems with lower cost, subsequently helping patients, particularly those from non developed countries.


SICOT-J ◽  
2021 ◽  
Vol 7 ◽  
pp. 58
Author(s):  
Cécile Batailler ◽  
Jobe Shatrov ◽  
Axel Schmidt ◽  
Elvire Servien ◽  
Jean Marc Puch ◽  
...  

Introduction: The design of uncemented femoral stems for use in total hip arthroplasty has evolved. Several uncemented short stems have been developed with different bone fixations, shapes, or stem lengths. The literature analyzing the biomechanical performance of short to standard stem lengths is limited. The aim was to compare the stress repartition on a standard uncemented stem and a shortened uncemented femoral stem with the same design features. Material and methods: This finite element analysis assessed the stress repartition on two femoral components with the same design (uncemented, collared, proximal trapezoidal cross-section, and a tapered quadrangular distal stem) but with two different lengths. The shortened stem was shorter by 40 mm compared to the standard stem. The stress repartition was analysed according to the Von Mises criterion. Results: The stress repartition was similar for the standard and shorter stem without significant difference (p = 0.94). The mean Von Mises stress was 58.1 MPa [0.2; 154.1] for the standard stem and 57.2 MPa [0.03; 160.2] for the short stem. The distal part of the standard stem, which was removed in the short stem, had mean stress of 3.7 MPa [0.2; 7.0]. Conclusion: The finite element analysis found similar stress repartitions between a standard uncemented collared stem and a short, collared stem with the same design. A clinical study assessing the clinical outcomes and the bone remodelling with a collared short stem would be interesting to confirm these first promising results.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


2021 ◽  
Vol 11 (6) ◽  
pp. 2547 ◽  
Author(s):  
Carlo Prati ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Alexandre Luiz Souto Borges ◽  
Maurizio Ventre ◽  
...  

The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidity.


Author(s):  
Osezua Obehi Ibhadode ◽  
Ishaya Musa Dagwa ◽  
Akii Okonigbon Akhaehomen Ibhadode

Calibration curves of a multi-component dynamometer is of essence in machining operations in a lathe machine as they serve to provide values of force and stress components for cutting tool development and optimization. In this study, finite element analysis has been used to obtain the deflection and stress response of a two component cutting tool lathe dynamometer, for turning operation, when the cutting tool is subjected to cutting and thrust forces from 98.1N to 686.7N (10 to 70kg-wts), at intervals of 98.1N(10kg-wt). By obtaining the governing equation, modeling the dynamometer assembly, defining boundary conditions, generating the assembly mesh, and simulating in Inventor Professional; horizontal and vertical components of deflection by the dynamometer were read off for three different loading scenarios. For these three loading scenarios, calibration plots by experiment compared with plots obtained from simulation by finite element analysis gave accuracies of 79%, 95%, 84% and 36%, 57%, 63% for vertical and horizontal deflections respectively. Also, plots of horizontal and vertical components of Von Mises stress against applied forces were obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


2018 ◽  
Vol 7 (4.26) ◽  
pp. 190 ◽  
Author(s):  
Nur Fatin Izzati Ibrahim ◽  
Ruslizam Daud ◽  
Muhammad Khairul Ali Hassan ◽  
Noor Ali Hassan ◽  
Noor Alia Md Zain ◽  
...  

Axial stiffness is the most important factor in stability. It is known that any changes in the diameter of any components of the frame will either increase or decrease the axial stiffness of the fixation. The model of implant and bone will be variety as the variables changes. Current studies states that ring stability are one of the most important factors in ensuring fractured bones to have a successful re-union. In circular external fixation, the stability of the pin-bone interaction is influenced by the stability of the fixation frame where the major component is the rings. The objective is to study the finite element analysis (FEA) of the external fixator assembled in human diaphysis under compression force with different materials of the exoskeleton which are stainless steel, titanium alloy, magnesium alloy and carbon fiber. The results obtained show the mechanical strength of each material where it will be used to compare the value of von-Mises stress, stiffness and total deformation to acquire the best suitable ring diameter and material. Based on the result, as the diameter of the ring increases, the stiffness of the ring will be decreased. 


Sign in / Sign up

Export Citation Format

Share Document