scholarly journals Effects of first- and third-person perspectives created using a head-mounted display on dart-throwing accuracy

Author(s):  
Yuki Ueyama ◽  
Masanori Harada

Abstract The first-person perspective (1PP) and third-person perspective (3PP) have both been adopted in video games. The 1PP can induce a strong sense of immersion, and the 3PP allows players to perceive distances easily. Virtual reality (VR) technologies have also adopted both perspectives to facilitate skill acquisition. However, how 1PP and 3PP views affect motor skills in the real world, as opposed to in games and virtual environments, remains unclear. This study examined the effects of the 1PP and 3PP on real-world dart-throwing accuracy after head-mounted display (HMD)-based practice tasks involving either the 1PP or 3PP. The 1PP group showed poorer dart-throwing performance, whereas the 3PP task had no effect on performance. Furthermore, while the effect of the 1PP task persisted for some time, that of task 3PP disappeared immediately. Therefore, the effects of 1PP VR practice tasks on motor control transfer more readily to the real world than do those of 3PP tasks.

2020 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Alexey Tumialis ◽  
Alexey Smirnov ◽  
Kirill Fadeev ◽  
Tatiana Alikovskaia ◽  
Pavel Khoroshikh ◽  
...  

The perspective of perceiving one’s action affects its speed and accuracy. In the present study, we investigated the change in accuracy and kinematics when subjects throw darts from the first-person perspective and the third-person perspective with varying angles of view. To model the third-person perspective, subjects were looking at themselves as well as the scene through the virtual reality head-mounted display (VR HMD). The scene was supplied by a video feed from the camera located to the up and 0, 20 and 40 degrees to the right behind the subjects. The 28 subjects wore a motion capture suit to register their right hand displacement, velocity and acceleration, as well as torso rotation during the dart throws. The results indicated that mean accuracy shifted in opposite direction with the changes of camera location in vertical axis and in congruent direction in horizontal axis. Kinematic data revealed a smaller angle of torso rotation to the left in all third-person perspective conditions before and during the throw. The amplitude, speed and acceleration in third-person condition were lower compared to the first-person view condition, before the peak velocity of the hand in the direction toward the target and after the peak velocity in lowering the hand. Moreover, the hand movement angle was smaller in the third-person perspective conditions with 20 and 40 angle of view, compared with the first-person perspective condition just preceding the time of peak velocity, and the difference between conditions predicted the changes in mean accuracy of the throws. Thus, the results of this study revealed that subject’s localization contributed to the transformation of the motor program.


10.2196/18888 ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. e18888
Author(s):  
Susanne M van der Veen ◽  
Alexander Stamenkovic ◽  
Megan E Applegate ◽  
Samuel T Leitkam ◽  
Christopher R France ◽  
...  

Background Visual representation of oneself is likely to affect movement patterns. Prior work in virtual dodgeball showed greater excursion of the ankles, knees, hips, spine, and shoulder occurs when presented in the first-person perspective compared to the third-person perspective. However, the mode of presentation differed between the two conditions such that a head-mounted display was used to present the avatar in the first-person perspective, but a 3D television (3DTV) display was used to present the avatar in the third-person. Thus, it is unknown whether changes in joint excursions are driven by the visual display (head-mounted display versus 3DTV) or avatar perspective during virtual gameplay. Objective This study aimed to determine the influence of avatar perspective on joint excursion in healthy individuals playing virtual dodgeball using a head-mounted display. Methods Participants (n=29, 15 male, 14 female) performed full-body movements to intercept launched virtual targets presented in a game of virtual dodgeball using a head-mounted display. Two avatar perspectives were compared during each session of gameplay. A first-person perspective was created by placing the center of the displayed content at the bridge of the participant’s nose, while a third-person perspective was created by placing the camera view at the participant’s eye level but set 1 m behind the participant avatar. During gameplay, virtual dodgeballs were launched at a consistent velocity of 30 m/s to one of nine locations determined by a combination of three different intended impact heights and three different directions (left, center, or right) based on subject anthropometrics. Joint kinematics and angular excursions of the ankles, knees, hips, lumbar spine, elbows, and shoulders were assessed. Results The change in joint excursions from initial posture to the interception of the virtual dodgeball were averaged across trials. Separate repeated-measures ANOVAs revealed greater excursions of the ankle (P=.010), knee (P=.001), hip (P=.0014), spine (P=.001), and shoulder (P=.001) joints while playing virtual dodgeball in the first versus third-person perspective. Aligning with the expectations, there was a significant effect of impact height on joint excursions. Conclusions As clinicians develop treatment strategies in virtual reality to shape motion in orthopedic populations, it is important to be aware that changes in avatar perspective can significantly influence motor behavior. These data are important for the development of virtual reality assessment and treatment tools that are becoming increasingly practical for home and clinic-based rehabilitation.


2020 ◽  
Author(s):  
Susanne M van der Veen ◽  
Alexander Stamenkovic ◽  
Megan E Applegate ◽  
Samuel T Leitkam ◽  
Christopher R France ◽  
...  

BACKGROUND Visual representation of oneself is likely to affect movement patterns. Prior work in virtual dodgeball showed greater excursion of the ankles, knees, hips, spine, and shoulder occurs when presented in the first-person perspective compared to the third-person perspective. However, the mode of presentation differed between the two conditions such that a head-mounted display was used to present the avatar in the first-person perspective, but a 3D television (3DTV) display was used to present the avatar in the third-person. Thus, it is unknown whether changes in joint excursions are driven by the visual display (head-mounted display versus 3DTV) or avatar perspective during virtual gameplay. OBJECTIVE This study aimed to determine the influence of avatar perspective on joint excursion in healthy individuals playing virtual dodgeball using a head-mounted display. METHODS Participants (n=29, 15 male, 14 female) performed full-body movements to intercept launched virtual targets presented in a game of virtual dodgeball using a head-mounted display. Two avatar perspectives were compared during each session of gameplay. A first-person perspective was created by placing the center of the displayed content at the bridge of the participant’s nose, while a third-person perspective was created by placing the camera view at the participant’s eye level but set 1 m behind the participant avatar. During gameplay, virtual dodgeballs were launched at a consistent velocity of 30 m/s to one of nine locations determined by a combination of three different intended impact heights and three different directions (left, center, or right) based on subject anthropometrics. Joint kinematics and angular excursions of the ankles, knees, hips, lumbar spine, elbows, and shoulders were assessed. RESULTS The change in joint excursions from initial posture to the interception of the virtual dodgeball were averaged across trials. Separate repeated-measures ANOVAs revealed greater excursions of the ankle (<i>P</i>=.010), knee (<i>P</i>=.001), hip (<i>P</i>=.0014), spine (<i>P</i>=.001), and shoulder (<i>P</i>=.001) joints while playing virtual dodgeball in the first versus third-person perspective. Aligning with the expectations, there was a significant effect of impact height on joint excursions. CONCLUSIONS As clinicians develop treatment strategies in virtual reality to shape motion in orthopedic populations, it is important to be aware that changes in avatar perspective can significantly influence motor behavior. These data are important for the development of virtual reality assessment and treatment tools that are becoming increasingly practical for home and clinic-based rehabilitation.


2020 ◽  
Author(s):  
Xiaoyang Yu

The human brain and the human language are precisely constructed together by evolution/genes, so that in the objective world, a human brain can tell a story to another brain in human language which describes an imagined multiplayer game; in this story, one player of the game represents the human brain itself. It’s possible that the human kind doesn’t really have a subjective world (doesn’t really have conscious experience). An individual has no control even over her choices. Her choices are controlled by the neural substrate. The neural substrate is controlled by the physical laws. So, her choices are controlled by the physical laws. So, she is powerless to do anything other than what she actually does. This is the view of fatalism. Specifically, this is the view of a totally global fatalism, where people have no control even over their choices, from the third-person perspective. And I just argued for fatalism by appeal to causal determinism. Psychologically, a third-person perspective and a new, dedicated personality state are required to bear the totally global fatalism, to avoid severe cognitive dissonance with our default first-person perspective and our original personality state.


2021 ◽  
Author(s):  
Sahba Besharati ◽  
Paul Jenkinson ◽  
Michael Kopelman ◽  
Mark Solms ◽  
Valentina Moro ◽  
...  

In recent decades, the research traditions of (first-person) embodied cognition and of (third-person) social cognition have approached the study of self-awareness with relative independence. However, neurological disorders of self-awareness offer a unifying perspective to empirically investigate the contribution of embodiment and social cognition to self-awareness. This study focused on a neuropsychological disorder of bodily self-awareness following right-hemisphere damage, namely anosognosia for hemiplegia (AHP). A previous neuropsychological study has shown AHP patients, relative to neurological controls, to have a specific deficit in third-person, allocentric inferences in a story-based, mentalisation task. However, no study has tested directly whether verbal awareness of motor deficits is influenced by either perspective-taking or centrism, and if these deficits in social cognition are correlated with damage to anatomical areas previously linked to mentalising, including the supramarginal and superior temporal gyri and related limbic white matter connections. Accordingly, two novel experiments were conducted with right-hemisphere stroke patients with (n = 17) and without AHP (n = 17) that targeted either their own (egocentric, experiment 1) or another stooge patient’s (experiment 2) motor abilities from a first-or-third person (allocentric in Experiment 2) perspective. In both experiments, neurological controls showed no significant difference between perspectives, suggesting that perspective-taking deficits are not a general consequence of right-hemisphere damage. More specifically, experiment 1 found AHP patients were more aware of their own motor paralysis when asked from a third compared to a first-person perspective, using both group level and individual level analysis. In experiment 2, AHP patients were less accurate than controls in making allocentric, third-person perspective judgements about the stooge patient, but with only a trend towards significance and with no within-group, difference between perspectives. Deficits in egocentric and allocentric third-person perspective taking were associated with lesions in the middle frontal gyrus, superior temporal and supramarginal gyri, with white matter disconnections more predominate in deficits in allocentricity. This study confirms previous clinical and empirical investigations on the selectivity of first-person motor awareness deficits in anosognosia for hemiplegia and experimentally demonstrates for the first time that verbal egocentric 3PP-taking can positively influence 1PP body awareness.


2021 ◽  
Vol 5 (1) ◽  
pp. 147-158
Author(s):  
Renata Zieminska

The paper presents the concept of masculinity within the non-binary and multilayered model of gender/sex traits. Within that model, masculinity is not a simple idea, but rather is fragmented into many traits in diverse clusters. The experience of transgender men and men with intersex traits suggests that self-determined male gender identity is a mega trait that is sufficient for being a man. However, masculinity is not only psychological, as the content of the psychological feeling of being a man refers to social norms about how men should be and behave. And male coded traits are described as traits that frequently occur within the group of people identifying as men. Therefore, I claim that there are two interdependent ideas in the concept of masculinity: the self-determined male gender identity (first-person perspective) and a cluster of traits coded as male (third-person perspective). Within non-binary model the interplay between the two interdependent ideas allows to include borderline masculinities.


2019 ◽  
Author(s):  
Carl Michael Orquiola Galang ◽  
Sukhvinder S. Obhi ◽  
Michael Jenkins

Previous neurophysiological research suggests that there are event-related potential (ERP) components are associated with empathy for pain: early affective component (N2) and two late cognitive components (P3/LPP). The current study investigated whether and how the visual perspective from which a painful event is observed affects these ERP components. Participants viewed images of hands in pain vs. not in pain from a first-person or third-person perspective. We found that visual perspective influences both the early and late components. In the early component (N2), there was a larger mean amplitude during observation of pain vs no-pain exclusively when images were shown from a first-person perspective. We suggest that this effect may be driven by misattributing the on-screen hand to oneself. For the late component (P3), we found a larger effect of pain on mean amplitudes in response to third-person relative to first-person images. We speculate that the P3 may reflect a later process that enables effective recognition of others’ pain in the absence of misattribution. We discuss our results in relation to self- vs other-related processing by questioning whether these ERP components are truly indexing empathy (an other-directed process) or a simple misattribution of another’s pain as one’s own (a self-directed process).


Sign in / Sign up

Export Citation Format

Share Document