scholarly journals Nanog/NFATc1/Osterix signaling pathway-mediated promotion of bone formation at the tendon-bone interface after ACL reconstruction with De-BMSCs transplantation

Author(s):  
Kai Tie ◽  
Jinghang Cai ◽  
Jun Qin ◽  
Hao Xiao ◽  
Yangfan Shangguan ◽  
...  

Abstract Background: Bone formation plays an important role in early tendon-bone healing after anterior cruciate ligament reconstruction (ACLR). Dedifferentiated osteogenic bone marrow mesenchymal stem cells (De-BMSCs) have enhanced osteogenic potential. This study aimed to investigate the effect of De-BMSCs transplantation on the promotion of bone formation at the tendon-bone interface after ACLR and to further explore the molecular mechanism of the enhanced osteogenic potential of De-BMSCs.Methods: BMSCs from the femurs and tibias of New Zealand White rabbits were subjected to osteogenic induction and then cultured in medium without osteogenic factors; the obtained cell population was termed De-BMSCs. De-BMSCs were induced to undergo osteo-, chondro- and adipo-differentiation in vitro to examine the characteristics of primitive stem cells. An ACLR model with a semitendinosus tendon was established in rabbits, and the animals were divided into a control group, BMSCs group and De-BMSCs group. At 12 weeks after surgery, the rabbits in each group were sacrificed to evaluate tendon-bone healing by histologic staining, micro–computed tomography (micro-CT) examination, and biomechanical testing. During osteogenic differentiation of De-BMSCs, an siRNA targeting nuclear factor of activated T cells 1 (NFATc1) was used to verify the molecular mechanism of the enhanced osteogenic potential of De-BMSCs.Results: De-BMSCs exhibited some properties similar to BMSCs, including multiple differentiation potential and cell surface markers. Bone formation at the tendon-bone interface in the De-BMSCs group was significantly increased, and biomechanical strength was significantly improved. During the osteogenic differentiation of De-BMSCs, the expression of Nanog and NFATc1 was synergistically increased, which promoted the interaction of NFATc1 and Osterix, resulting in increased expression of osteoblast marker genes such as COL1A, OCN, and OPN.Conclusions: De-BMSCs transplantation could promote bone formation at the tendon-bone interface after ACLR and improve the biomechanical strength of the reconstruction. The Nanog/NFATc1/Osterix signaling pathway mediated the enhanced osteogenic differentiation efficiency of De-BMSCs.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Tie ◽  
Jinghang Cai ◽  
Jun Qin ◽  
Hao Xiao ◽  
Yangfan Shangguan ◽  
...  

Abstract Background Bone formation plays an important role in early tendon–bone healing after anterior cruciate ligament reconstruction (ACLR). Dedifferentiated osteogenic bone marrow mesenchymal stem cells (De-BMSCs) have enhanced osteogenic potential. This study aimed to investigate the effect of De-BMSCs transplantation on the promotion of bone formation at the tendon–bone interface after ACLR and to further explore the molecular mechanism of the enhanced osteogenic potential of De-BMSCs. Methods BMSCs from the femurs and tibias of New Zealand white rabbits were subjected to osteogenic induction and then cultured in medium without osteogenic factors; the obtained cell population was termed De-BMSCs. De-BMSCs were induced to undergo osteo-, chondro- and adipo-differentiation in vitro to examine the characteristics of primitive stem cells. An ACLR model with a semitendinosus tendon was established in rabbits, and the animals were divided into a control group, BMSCs group, and De-BMSCs group. At 12 weeks after surgery, the rabbits in each group were sacrificed to evaluate tendon–bone healing by histologic staining, micro-computed tomography (micro-CT) examination, and biomechanical testing. During osteogenic differentiation of De-BMSCs, an siRNA targeting nuclear factor of activated T-cells 1 (NFATc1) was used to verify the molecular mechanism of the enhanced osteogenic potential of De-BMSCs. Results De-BMSCs exhibited some properties similar to BMSCs, including multiple differentiation potential and cell surface markers. Bone formation at the tendon–bone interface in the De-BMSCs group was significantly increased, and biomechanical strength was significantly improved. During the osteogenic differentiation of De-BMSCs, the expression of Nanog and NFATc1 was synergistically increased, which promoted the interaction of NFATc1 and Osterix, resulting in increased expression of osteoblast marker genes such as COL1A, OCN, and OPN. Conclusions De-BMSCs transplantation could promote bone formation at the tendon–bone interface after ACLR and improve the biomechanical strength of the reconstruction. The Nanog/NFATc1/Osterix signaling pathway mediated the enhanced osteogenic differentiation efficiency of De-BMSCs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Manal Nabil Hagar ◽  
Farinawati Yazid ◽  
Nur Atmaliya Luchman ◽  
Shahrul Hisham Zainal Ariffin ◽  
Rohaya Megat Abdul Wahab

Abstract Background Mesenchymal stem cells isolated from the dental pulp of primary and permanent teeth can be differentiated into different cell types including osteoblasts. This study was conducted to compare the morphology and osteogenic potential of stem cells from exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC) in granular hydroxyapatite scaffold (gHA). Preosteoblast cells (MC3T3-E1) were used as a control group. Methodology The expression of stemness markers for DPSC and SHED was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR). Alkaline phosphatase assay was used to compare the osteoblastic differentiation of these cells (2D culture). Then, cells were seeded on the scaffold and incubated for 21 days. Morphology assessment using field emission scanning electron microscopy (FESEM) was done while osteogenic differentiation was detected using ALP assay (3D culture). Results The morphology of cells was mononucleated, fibroblast-like shaped cells with extended cytoplasmic projection. In RT-PCR study, DPSC and SHED expressed GAPDH, CD73, CD105, and CD146 while negatively expressed CD11b, CD34 and CD45. FESEM results showed that by day 21, dental stem cells have a round like morphology which is the morphology of osteoblast as compared to day 7. The osteogenic potential using ALP assay was significantly increased (p < 0.01) in SHED as compared to DPSC and MC3T3-E1 in 2D and 3D cultures. Conclusion gHA scaffold is an optimal scaffold as it induced osteogenesis in vitro. Besides, SHED had the highest osteogenic potential making them a preferred candidate for tissue engineering in comparison with DPSC.


2020 ◽  
Author(s):  
Lungang Shi ◽  
Yan Liang ◽  
Lijing Yang ◽  
Binchen Li ◽  
Binna Zhang ◽  
...  

AbstractBackgroundAll-trans retinoic acid (atRA) results in cleft palate, but the cellular and molecular mechanisms underlying the teratogenic effects on palatal development have not been fully elucidated. Autophagy interruption has been reported to seriously affect embryonic-cell differentiation and development. This study aimed to verify whether atRA-induced cleft palate occurs because atRA blocks autophagy and stemness of embryonic palatal mesenchyme (MEPM) cells, which are maintained via the phosphatase and tensin homolog (PTEN)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) autophagic signaling pathway, and inhibits osteogenic-differentiation potential of MEPM cells, which could lead to the development of cleft palate.MethodsTo assess the stemness and pluripotency of MEPM cells, we analyzed their surfacemarkers using immunofluorescence (IF) and flow cytometry (FCM). Differentiation potentials, such as osteogenic, adipogenic, and chondrogenic differentiation, were induced. We also investigated the role of the PTEN/Akt/mTOR autophagic signaling pathway, which maintains the stemness and pluripotency of MEPM cells. Using transmission electron microscopy (TEM), Western blot analysis, quantitative reverse transcriptase polymerase chain reaction (RT-qPCR), messenger ribonucleic acid (mRNA) microarray, dual-luciferase reporter system, and exosomes, we found that atRA blocks autophagy and osteogenic differentiation of MEPM cells through micro-ribonucleic acid (miR)-106a-5p by targeting the PTEN/Akt/mTOR autophagic pathway.ResultsIn vitro purified MEPM cells expressed cell surface markers similar to those of mouse bone marrow stem cells. Additionally, in vitro MEPM cells were ectomesenchymal and expressed the neural-crest marker human natural killer-1 (HNK-1), the mesodermal marker vimentin, and the ectodermal marker nestin. They were also positive for in vitro MEPM markers, including platelet-derived growth factor alpha (PDGFRα), ephrin B1 (Efnb1), odd-skipped related 2 (Osr2), and Meox2, as well as for stemness markers including POU class 5 homeobox 4 (Oct4), Nanog, and sex-determining region Y-related HMG box 2 (Sox2). MEPM cell pluripotency was retained through activation of the PTEN/Akt/mTOR autophagic signaling pathway. We found that atRA blocked MEPM cell pluripotency to inhibit osteogenic differentiation via miR-106a-5p targeting of PTEN mRNA and subsequent suppression of the PTEN/Akt/mTOR autophagic pathway.ConclusionsIn vitro cultured MEPM cells are ectomesenchymal stem cells that have strong osteogenic differentiation potential, and MEPM pluripotency is regulated by autophagy via the PTEN/AKT/mTOR signaling pathway. atRA disrupts MEPM cell pluripotency through PTEN/AKT/mTOR signaling inactivation where miR-106a-5p targets PTEN mRNA to reduce osteogenic differentiation of MEPM cells and results in the development of cleft palates. Our findings provide new insight into the mechanism underlying the development of cleft palate, and miR-106a-5p may act as a prenatal screening biomarker for cleft palate as well as a new diagnostic and therapeutic target.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qianyi Qin ◽  
Haoqing Yang ◽  
Chen Zhang ◽  
Xiao Han ◽  
Jing Guo ◽  
...  

Alveolar bone remodeling under orthodontic force is achieved by periodontal ligament stem cells (PDLSCs), which are sensitive to mechanical loading. How to regulate functions of PDLSCs is a key issue in bone remodeling during orthodontic tooth movement. This study is aimed at investigating the roles of lncRNA Hedgehog-interacting protein antisense RNA 1 (HHIP-AS1) in the functional regulation of PDLSCs. First, HHIP-AS1 expression was downregulated in PDLSCs under continuous compressive pressure. Then, we found that the alkaline phosphatase activity, in vitro mineralization, and expression levels of bone sialoprotein, osteocalcin, and osterix were increased in PDLSCs by HHIP-AS1. The results of scratch migration and transwell chemotaxis assays revealed that HHIP-AS1 inhibited the migration and chemotaxis abilities of PDLSCs. In addition, the RNA sequencing data showed that 356 mRNAs and 14 lncRNAs were upregulated, including receptor tyrosine kinase-like orphan receptor 2 and nuclear-enriched abundant transcript 1, while 185 mRNAs and 6 lncRNAs were downregulated, including fibroblast growth factor 5 and LINC00973, in HHIP-AS1-depleted PDLSCs. Bioinformatic analysis revealed several biological processes and signaling pathways related to HHIP-AS1 functions, including the PI3K-Akt signaling pathway and JAK-STAT signaling pathway. In conclusion, our findings indicated that HHIP-AS1 was downregulated in PDLSCs under compressive pressure, and it promoted the osteogenic differentiation potential and inhibited the migration and chemotaxis abilities of PDLSCs. Thus, HHIP-AS1 may be a potential target for accelerating tooth movement during orthodontic treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yu-Hee Kim ◽  
Kyung-Ah Cho ◽  
Hyun-Ji Lee ◽  
Minhwa Park ◽  
Han Su Kim ◽  
...  

The application of mesenchymal stem cells (MSCs) for treating bone-related diseases shows promising outcomes in preclinical studies. However, cells that are isolated and defined as MSCs comprise a heterogeneous population of progenitors. This heterogeneity can produce variations in the performance of MSCs, especially in applications that require differentiation potential in vivo, such as the treatment of osteoporosis. Here, we aimed to identify genetic markers in tonsil-derived MSCs (T-MSCs) that can predict osteogenic potential. Using a single-cell cloning method, we isolated and established several lines of nondifferentiating (ND) or osteoblast-prone (OP) clones. Next, we performed transcriptome sequencing of three ND and three OP clones that maintained the characteristics of MSCs and determined the top six genes that were upregulated in OP clones. Upregulation of WNT16 and DCLK1 expression was confirmed by real-time quantitative PCR, but only WNT16 expression was correlated with the osteogenic differentiation of T-MSCs from 10 different donors. Collectively, our findings suggest that WNT16 is a putative genetic marker that predicts the osteogenic potential of T-MSCs. Thus, examination of WNT16 expression as a selection criterion prior to the clinical application of MSCs may enhance the therapeutic efficacy of stem cell therapy for bone-related complications, including osteoporosis.


2010 ◽  
Vol 31 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Feng Pan ◽  
Rui Zhang ◽  
Guang Wang ◽  
Yin Ding

The existence of PDLSCs [PDL (periodontal ligament) stem cells] in PDL has been identified and such cells may function in periodontal reconstruction, including bone formation. Oestrogens/ERs (oestrogen receptors; ERα and ERβ) exert important effects in bone formation, however, the relationship between ERs and PDLSCs has not been established. In the present study, PDLSCs were isolated and assays for detecting stem-cell biomarkers and multipotential differentiation potential confirmed the validity of human PDLSCs. The results of RT–PCR (reverse transcription–PCR) and Western blotting showed that ERα and ERβ were expressed at higher levels in PDLSCs as compared with PDLCs (PDL cells), and 17β-oestradiol obviously induced the osteogenic differentiation of PDLSCs in vitro. Furthermore, a pan-ER inhibitor or lentivirus-mediated siRNA (small interfering RNA) targeting ERα or ERβ blocked the oestrogen-induced osteogenic differentiation of PDLSCs. The results indicate that both ERα and ERβ were involved in the process of osteogenic differentiation of PDLSCs.


2021 ◽  
Author(s):  
Tianli Wu ◽  
Zhihao Yao ◽  
Gang Tao ◽  
Fangzhi Lou ◽  
Hui Tang ◽  
...  

Abstract Objective: Although it has been demonstrated that adipose-derived stem cells (ASCs) from osteoporosis mice (OP-ASCs) exhibit impaired osteogenic differentiation potential, the molecular mechanism has not yet been elucidated. We found that Fzd6 was decreased in OP-ASCs compared with ASCs. This study investigates the effects and underlying mechanisms of Fzd6 in the osteogenic potential of OP-ASCs. Methods: Fzd6 expression in ASCs and OP-ASCs was measured by PCR gene chip. Fzd6 overexpression and silencing lentiviruses were used to evaluate the role of Fzd6 in the osteogenic differentiation of OP-ASCs. Real-time PCR (qPCR) and western blotting (WB) was performed to detect the expression of Fzd6 and bone-related molecules, including runt-related transcription factor 2 (Runx2) and osteopontin (Opn). Alizarin red staining and Alkaline phosphatase (ALP) staining was performed following osteogenic induction. Microscopic CT (Micro-CT), hematoxylin and eosin staining (H&E) staining, and Masson staining were used to assess the role of Fzd6 in osteogenic differentiation of osteoporosis (OP) mice in vivo.Results: Expression of Fzd6 was decreased significantly in OP-ASCs. Fzd6 silencing down-regulated the osteogenic ability of OP-ASCs in vitro. Overexpression of Fzd6 rescued the impaired osteogenic capacity in OP-ASCs in vitro. We obtained similar results in vivo.Conclusions: Fzd6 plays an important role in regulating the osteogenic ability of OP-ASCs both in vivo and in vitro. Overexpression of Fzd6 associated with the Wnt signaling pathway promotes the osteogenic ability of OP-ASCs, which provides new insights for the prevention and treatment of OP.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Junjie Shen ◽  
Yi Sun ◽  
Xuanzhe Liu ◽  
Yu Zhu ◽  
Bingbo Bao ◽  
...  

Abstract Background Osteogenesis is tightly coupled with angiogenesis during bone repair and regeneration. However, the underlying mechanisms linking these processes remain largely undefined. The present study aimed to test the hypothesis that epidermal growth factor-like domain-containing protein 6 (EGFL6), an angiogenic factor, also functions in bone marrow mesenchymal stem cells (BMSCs), playing a key role in the interaction between osteogenesis and angiogenesis. Methods We evaluated how EGFL6 affects angiogenic activity of human umbilical cord vein endothelial cells (HUVECs) via proliferation, transwell migration, wound healing, and tube-formation assays. Alkaline phosphatase (ALP) and Alizarin Red S (AR-S) were used to assay the osteogenic potential of BMSCs. qRT-PCR, western blotting, and immunocytochemistry were used to evaluate angio- and osteo-specific markers and pathway-related genes and proteins. In order to determine how EGFL6 affects angiogenesis and osteogenesis in vivo, EGFL6 was injected into fracture gaps in a rat tibia distraction osteogenesis (DO) model. Radiography, histology, and histomorphometry were used to quantitatively evaluate angiogenesis and osteogenesis. Results EGFL6 stimulated both angiogenesis and osteogenic differentiation through Wnt/β-catenin signaling in vitro. Administration of EGFL6 in the rat DO model promoted CD31hiEMCNhi type H-positive capillary formation associated with enhanced bone formation. Type H vessels were the referred subtype involved during DO stimulated by EGFL6. Conclusion EGFL6 enhanced the osteogenic differentiation potential of BMSCs and accelerated bone regeneration by stimulating angiogenesis. Thus, increasing EGFL6 secretion appeared to underpin the therapeutic benefit by promoting angiogenesis-coupled bone formation. These results imply that boosting local concentrations of EGFL6 may represent a new strategy for the treatment of compromised fracture healing and bone defect restoration.


2020 ◽  
Vol 21 (17) ◽  
pp. 6172
Author(s):  
Anna Labedz-Maslowska ◽  
Natalia Bryniarska ◽  
Andrzej Kubiak ◽  
Tomasz Kaczmarzyk ◽  
Malgorzata Sekula-Stryjewska ◽  
...  

Human dental pulp harbours unique stem cell population exhibiting mesenchymal stem/stromal cell (MSC) characteristics. This study aimed to analyse the differentiation potential and other essential functional and morphological features of dental pulp stem cells (DPSCs) in comparison with Wharton’s jelly-derived MSCs from the umbilical cord (UC-MSCs), and to evaluate the osteogenic differentiation of DPSCs in 3D culture with a hypoxic microenvironment resembling the stem cell niche. Human DPSCs as well as UC-MSCs were isolated from primary human tissues and were subjected to a series of experiments. We established a multiantigenic profile of DPSCs with CD45−/CD14−/CD34−/CD29+/CD44+/CD73+/CD90+/CD105+/Stro-1+/HLA-DR− (using flow cytometry) and confirmed their tri-lineage osteogenic, chondrogenic, and adipogenic differentiation potential (using qRT-PCR and histochemical staining) in comparison with the UC-MSCs. The results also demonstrated the potency of DPSCs to differentiate into osteoblasts in vitro. Moreover, we showed that the DPSCs exhibit limited cardiomyogenic and endothelial differentiation potential. Decreased proliferation and metabolic activity as well as increased osteogenic differentiation of DPSCs in vitro, attributed to 3D cell encapsulation and low oxygen concentration, were also observed. DPSCs exhibiting elevated osteogenic potential may serve as potential candidates for a cell-based product for advanced therapy, particularly for bone repair. Novel tissue engineering approaches combining DPSCs, 3D biomaterial scaffolds, and other stimulating chemical factors may represent innovative strategies for pro-regenerative therapies.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Maiko Yamamoto ◽  
Hidemi Nakata ◽  
Jia Hao ◽  
Joshua Chou ◽  
Shohei Kasugai ◽  
...  

Adipose tissue-derived stromal cells, termed ASCs, play an important role in regenerative applications. They resemble mesenchymal stem cells owing to their inexhaustibility, general differentiation potential, and plasticity and display a series of cell-specific and cluster-of-differentiation (CD) marker profiles similar to those of other somatic stem cells. Variations in phenotypes or differentiation are intimately associated with CD markers. The purpose of our study was to exhibit distinct populations of ASCs with differing characteristics for osteogenic differentiation. The primary cell batch of murine-derived ASCs was extracted from subcutaneous adipose tissue and the cells were sorted for the expression of the surface protein molecules CD90 and CD105 using flow cytometry. Each cell population sorted for CD90 and CD105 was analyzed for osteogenic potency after cell culture. The results suggested that ASCs exhibit distinct populations with differing characteristics for osteogenic differentiation: unsorted ASCs stimulated comparable mineralized nodule formation as bone marrow stromal cells (BMSCs) in osteogenic medium and viral transfection for BMP2 accelerated the formation of mineralized nodules in CD90 and/or CD105 positive ASCs with observation of decrease in CD105 expression after 14 days. Future studies assessing different immunophenotypes of ASCs should be undertaken to develop cell-based tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document