scholarly journals Characterization of Activated Carbon Prepared From the Nucleus of Ziziphus Lotus (NBEG): Isothermal Study and Kinetics of Adsorption of Methylene Blue

Author(s):  
Ibrahim Touzani ◽  
Kawtar FIKRI-BENBRAHIM ◽  
Hammou Ahlafi ◽  
Bouchaib Ihssane ◽  
Otmane Boudouch

Abstract Ziziphus lotus (Nbeg) is very common in Morocco where it occupies various ecosystems and presents different interests; however it remains devalued and knows recent deterioration due to the human pressure through clearing, wood collection, irrational cuts’ exploitation and overgrazing. This study aims to prepare activated carbon from the cores of this interesting biomaterial, for the first time to the best of our knowledge, according to a manufacturing process based on its chemical and thermal activation. The cores of Ziziphus lotus (Nbeg) were chemically activated by sulfuric acid (H2SO4, 98%) for 24h with a mass contribution (1:1), and then carbonized at a temperature of 500 °C for 2 hours. The obtained activated carbon was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and specific surface measurement. These characterization results showed an important porosity and a surface structure having acid groups and carboxylic functions. The adsorption of methylene blue (MB) was evaluated, by Langmuir and Freundlich models examination, in order to explain the adsorption efficiency in a systematic and scientific way. Also pseudo-first order and pseudo-second order kinetic models were used to identify the possible mechanisms of this adsorption process. The results showed that the MB adsorption process on activated carbon follows the Langmuir model and that the adsorption kinetic is best represented by kinetics data of the pseudo-second order model. Therefore, Z. lotus can be used as a low-cost available material to prepare a high quality activated carbon having a promising potential in the wastewater treatment.

2018 ◽  
Vol 78 (10) ◽  
pp. 2055-2063
Author(s):  
Asmaa Msaad ◽  
Mounir Belbahloul ◽  
Samir El Hajjaji ◽  
Abdeljalil Zouhri

Abstract In this work, the use of a novel low-cost adsorbent derived from Ziziphus lotus (ZL) and industrial carbon (IC) has been successfully applied to the removal of methylene blue (MB) from aqueous solutions. The efficiency of this material was studied through Lagergren pseudo-first-order and pseudo-second-order kinetic models. The process for the novel activated carbon and the IC were best represented by the pseudo-second-order rate model. Langmuir and Freundlich isotherms were used to describe the sorption equilibrium data. The Langmuir model turned out to be the most adequate and maximum capacities were measured to be 833.33 and 142.85 mg.g−1 for ZL activated carbon and IC from Sigma Aldrich, respectively. The thermodynamic study revealed that the sorption process is spontaneous and endothermic for the two adsorbents. To explain the effectiveness of MB removal, ZL activated carbon was characterized by scanning electron microscopy, Brunauer–Emmett–Teller surface area, X-ray diffraction and Fourier transform infrared spectroscopy.


2015 ◽  
Vol 17 (4) ◽  
pp. 784-795 ◽  

<div> <p>Low cost agricultural waste adsorbents can be viable alternatives to activated carbon for the treatment of contaminated wastewater. Sugarcane Bagasse, an abundant agriculture waste in Egypt, was used in the present study to prepare activated carbon. Batch adsorption experiments were conducted to study its effectiveness to remove cationic dye methylene blue from aqueous solution. The effects of initial dye concentrations, agitation time, solution pH and temperature on methylene blue dye removal were investigated. The optimum pH value for the maximum percentage removal of the dye was 7. Adsorption isotherms were determined and modeled with Redlich&ndash;Peterson, Langmuir and Freundlich equations at 20&ordm;C.The kinetic data were analyzed using Pseudo-first order, pseudo-second order. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Thermodynamic parameters such as standard enthalpy (ΔH&deg;), standard entropy (ΔS&deg;) and free energy (ΔG&deg;) were determined.&nbsp; The equilibrium data were best fitted to the Redlich&ndash;Peterson isotherm model .The adsorption kinetics was found to follow the pseudo-second-order kinetic model with good correlation coefficient. The positive ΔH<sup>◦</sup> value indicated that the adsorption process was endothermic in nature. The results revealed sugarcane bagasse activated carboncould be employed as a low-cost alternative adsorbent in wastewater treatment.&nbsp;</p> </div> <p>&nbsp;</p>


2021 ◽  
Vol 68 (2) ◽  
pp. 363-373
Author(s):  
Roya Salahshour ◽  
Mehdi Shanbedi ◽  
Hossein Esmaeili

In the present work, methylene blue was eliminated from aqueous solution using activated carbon prepared by lotus leaves. To perform the experiments, batch method was applied. Also, several analyses such as SEM, FTIR, EDAX and BET were done to determine the surface properties of the activated carbon. The results showed that the maximum sorption efficiency of 97.59% was obtained in initial dye concentration of 10 mg/L, pH of 9, adsorbent dosage of 4 g/L, temperature of 25 °C, contact time of 60 min and mixture speed of 400 rpm. Furthermore, the maximum adsorption capacity was determined 80 mg/g, which was a significant value. The experimental data was analyzed using pseudo-first order, pseudo-second order and intra-particle diffusion kinetic models, which the results showed that the pseudo-second order kinetic model could better describe the kinetic behavior of the sorption process. Also, the constant rate of the pseudo-second order kinetic model was obtained in the range of 0.0218–0.0345 g/mg.min. Moreover, the adsorption equilibrium was well described using Freundlich isotherm model. Furthermore, the thermodynamic studies indicated that the sorption process of methylene blue dye using the activated carbon was spontaneous and exothermic.


2015 ◽  
Vol 73 (2) ◽  
pp. 423-436 ◽  
Author(s):  
Çisem Kırbıyık ◽  
Ayşe Eren Pütün ◽  
Ersan Pütün

In this study, Fe(III) and Cr(III) metal ion adsorption processes were carried out with three adsorbents in batch experiments and their adsorption performance was compared. These adsorbents were sesame stalk without pretreatment, bio-char derived from thermal decomposition of biomass, and activated carbon which was obtained from chemical activation of biomass. Scanning electron microscopy and Fourier transform–infrared techniques were used for characterization of adsorbents. The optimum conditions for the adsorption process were obtained by observing the influences of solution pH, adsorbent dosage, initial solution concentration, contact time and temperature. The optimum adsorption efficiencies were determined at pH 2.8 and pH 4.0 for Fe(III) and Cr(III) metal ion solutions, respectively. The experimental data were modelled by different isotherm models and the equilibriums were well described by the Langmuir adsorption isotherm model. The pseudo-first-order, pseudo-second-order kinetic, intra-particle diffusion and Elovich models were applied to analyze the kinetic data and to evaluate rate constants. The pseudo-second-order kinetic model gave a better fit than the others. The thermodynamic parameters, such as Gibbs free energy change ΔG°, standard enthalpy change ΔH° and standard entropy change ΔS° were evaluated. The thermodynamic study showed the adsorption was a spontaneous endothermic process.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 852
Author(s):  
Sicong Yao ◽  
Massimiliano Fabbricino ◽  
Marco Race ◽  
Alberto Ferraro ◽  
Ludovico Pontoni ◽  
...  

Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1453
Author(s):  
Sultan Alam ◽  
Muhammad Sufaid Khan ◽  
Wahida Bibi ◽  
Ivar Zekker ◽  
Juris Burlakovs ◽  
...  

Paulownia tomentosa, a woody plant that is widely found in Pakistan and in other regions of the world, was used as a raw material to prepare activated carbon using chemical and physical activation methods. Adsorption of the dyes- acid red 4 and methylene blue onto the prepared activated carbon were analyzed by batch experiments. The impacts of different adsorption parameters such as pH, temperature, contact time, initial dye concentration and adsorbent dosage were also evaluated. Equilibrium data were fitted into various isotherm models such as: Langmuir, Temkin and Freundlich. High regression values were achieved with Langmuir isotherm model. Different kinetic adsorption models such as pseudo-first-order, pseudo-second-order and intra-particle diffusion model models were applied. The adsorption kinetics was found to be best-fitted into pseudo-second-order kinetic model. The optimum pH for acid red 4 was around 1 while for methylene blue it was 8. The optimum adsorbent dosage was 0.3 g for both dyes used. The activation energy (Ea) values were 30.57 and 3.712 kJ/mol, respectively for acid red 4 and methylene blue while the enthalpy (ΔH) and entropy (ΔS) values were correspondingly as 24.88/1.1927 kJ/mol and −2843.32/−0.329 J·mol/K for the mentioned dyes. The experimental result showed that the prepared activated carbon was the best in the removal of acid red 4 and methylene blue from aqueous media and therefore, could be preferably used as cheap adsorbent in wastewater treatment.


2021 ◽  
Vol 11 (5) ◽  
pp. 13214-13231

An activated carbon was developed from Moringa oleifera seed and modified with iron nanoparticles (AC-Fe) for application in the oils and greases (O&G) adsorption of the produced water. Activated carbon was prepared by pyrolysis and chemical activation using NaOH. Surface modification was performed by the wet impregnation method. AC-Fe was characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area analyzer (BET), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Boehm titration, and point of zero charge (pHPZC). The amount of O&G adsorbed on AC-Fe was sensitive to pH, initial concentration and temperature, but independent of ionic strength. Freundlich isotherm adjusted well, confirming the heterogeneous distribution of active sites and multilayer. The pseudo-second-order kinetic model accurately represents the O&G adsorption process by AC-Fe. Under different temperatures, the maximum amount of O&G adsorption in AC-Fe calculated by the pseudo-second-order kinetic model was 121.95 mg g-1 (298 K), 111.11 mg g-1 (303 K), and 106.38 mg g-1 (308 K). This high adsorption capacity demonstrates the new material potential as a low-cost adsorbent for O&G removal.


Author(s):  
Atyaf Khalid Hameed ◽  
Nugroho Dewayanto ◽  
Du Dongyun ◽  
Mohd Ridzuan Nordin ◽  
Mohd Hasbi Ab Rahim

<p>Zero valent iron supported on mesoporous silicanano particles (NZVI/MSNs) was prepared by the aqueous phase borohydride reduction methods. Prior to the reduction, mesoporous silica nanoparticles (MSNs) were prepared through the activation of fumed silica with concentrated HCl by refluxing at 90 °C. FTIR, XRD, FESEM, EDX and BET were used to characterize theadsorbents prepared. BET surface areas of MSNs, NZVI, and NZVI/MSNs were 126, 41, and 72 m<sup>2</sup>/g for, respectively. The performance of NZVI/MSNs as adsorbent was examined by adsorption of methylene blue (MB), performed in series of batch experiments. In the kinetic studies, pseudo first order and pseudo second order kinetic models were examined. The pseudo second order equation provided the best fit with the experimental data. Thermodynamic studies indicated that the adsorption process is endothermic with ΔH° was 90.53 kJ/mol. Positive ΔS° (300 J/mol) and negative ΔG° (-6.42 kJ/mol) was recorded, indicating the spontaneous of the adsorption process and naturally favorable. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 5<sup>th</sup> March 2016; Revised: 18<sup>th</sup> March 2016; Accepted: 18<sup>th</sup> March 2016</em></p><p><strong>How to Cite:</strong> Hameed, A.K., Dewayanto, N., Dongyun, D., Nordin, M.R., Mohd Hasbi Ab. Rahim, M.H.A. (2016). Kinetic and Thermodynamics of Methylene Blue Adsorption onto Zero Valent Iron Supported on Mesoporous Silica.<em> Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (2): 250-261 (doi:10.9767/bcrec.11.2.443.250-261)</p><p><strong>Permalink/DOI:</strong> http://dx.doi.org/10.9767/bcrec.11.2.443.250-261</p>


Author(s):  
Khawla Ben Jeddou ◽  
Fatma Bouaziz ◽  
Fadia Ben Taheur ◽  
Oumèma Nouri-Ellouz ◽  
Raoudha Ellouz-Ghorbel ◽  
...  

Abstract Adsorption of direct red 80 (DR 80) and methylene blue (MB) from aqueous solutions on potato peels (PP) has been compared. The use of peels in decontamination technology is very promising given the near zero-cost for the synthesis of those adsorbents. The selected potato peels were first analyzed by scanning using electron microscopy (SEM) and Fourier transforms infra red spectroscopy (FTIR). Then the adsorption behavior was studied in a batch system. The adsorption process is affected by various parameters such as the solution pH (2–11), the initial concentration of the dye (20, 50, 100, 150 and 200 mg L−1), the adsorbent dose (0.1%–3%), the temperature (303.16 K, 313.16 K, and 323.16 K), agitation (up to 250 rpm), as well as the contact time. Adsorption isotherms of the studied dye on the adsorbent were determined and compared with the Langmiur, Freundlich and Temkin adsorption models. The results show that the data was most similar to the Freundlich isotherm (R2 = 0.99). The maximum adsorption capacities (Qmax) of MB and DR 80 by the PP at temperatures 303.16 K, 313.16 K and 323.16 K were found to be approximately 97.08 mg g−1; 45.87 mg g−1; 61.35 mg g−1 and 27.778 mg g−1; 45.45 mg g−1; and 32.258 mg g−1. The kinetic data was compared to the pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. This revealed that adsorption of methylene blue onto PP abided mostly to the pseudo-second-order kinetic model. Calculations of various thermodynamic parameters such as enthalpy change (ΔH), entropy change (ΔS), and free energy change (ΔG) display the endothermic and spontaneous nature of the adsorption process.


REAKTOR ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 68-76
Author(s):  
Fahriya Puspita Sari ◽  
Dede Heri Yuli Yanto ◽  
Gustan Pari

Activated carbon was prepared from OPEFB by one step steam activation method. The adsorption performance for the removal of acid orange 52 (AO 52), reactive blue 19 (RB 19), basic violet 1 (BV 1) was investigated. Each dye has a different chemical structure such as azoic, anthraquinone, triarylmethane for AO 52, RB 19, and BV 1 respectively. The effects of adsorbent dosage, pH, and contact time on the adsorption process were studied. Experimental data were analyzed by model equations such as Langmuir, Freundlich and Temkin isotherms and it was found that the Langmuir isotherm model best fitted for all three dyes with R2 values is higher than 0.95. Langmuir model assumes a homogeneous nature and monolayer coverage of dye molecules at the outer surface of activated carbon. Adsorption kinetics was determined using pseudo-first-order, pseudo-second-order rate equations, Elovich model and also intraparticle diffusion models. Kinetic studies showed that the pseudo-second-order kinetic model better described the adsorption process with R2 values exceeds 0,99 compared with the other kinetics model. The SEM images showed AC pores was well developed with steam activation while wider porosity is created in the macropore range. FT-IR analysis had shown that the AC functional groups were disappeared because of vaporization the volatile materials when the heating process. Keywords: Activated Carbon, Adsorption Isotherms, Kinetic, OPEFB, Steam Activation


Sign in / Sign up

Export Citation Format

Share Document