scholarly journals Removal of Phosphorus from Domestic Sewage by a Constructed Wetland Coupled Microbial Fuel Cell System

Author(s):  
Shuang Yu ◽  
Peng Dou ◽  
Yue Yin ◽  
Peijing Wang ◽  
Hao Wang ◽  
...  

Abstract A constructed wetland (CW) coupled microbial fuel cell (MFC) system that treats wastewater and generates electricity was constructed. The total phosphorus in the simulated domestic sewage was used as the treatment target, and the optimal phosphorus removal effect and electricity generation were determined by comparing the changes in substrates, hydraulic retention times, and microorganisms. The mechanism underlying phosphorus removal was also analyzed. The experimental results showed that the best removal efficiencies of the two CW-MFC systems that used magnesia and garnet as substrates were 80.3% and 92.4%, respectively. Phosphorus removal by the garnet matrix mainly depends on a complex adsorption process whereas the magnesia system relies on ion exchange reactions. The CW-MFC system can also generate electricity. The highest output voltage and stable voltage of the garnet system were both higher than those of the magnesia system. The maximum stable voltage of the garnet device was 500 mV, while that of the magnesia device was 290 mV. The microorganisms in the soil and in the electrode within the wetland sediments also substantially changed, indicating that microorganisms positively respond to the removal of organic matter and power generation. Combining the advantages of constructed wetlands and microbial fuel cells also improves phosphorus removal in the coupled system. Therefore, when studying a CW-MFC system, the selection of electrode materials, matrix, and system structure should be taken into account in order to find a method that will improve the power generation capacity of the system and remove phosphorus.

2021 ◽  
Vol 945 (1) ◽  
pp. 012045
Author(s):  
Yucui Shi ◽  
Gang Tang ◽  
Yanchao Ye ◽  
Xinyi Luo ◽  
Shaohong You

Abstract Constructed wetland-microbial fuel cell coupling system is a new type of bioelectrochemical system that couples constructed wetland and microbial fuel cell. The system plays an important role in biological power generation and sewage purification. The principle is that the bottom of the constructed wetland bed (low ORP) serves as the anode of the microbial fuel cell. The organic matter in the water is degraded under the action of the electricity-producing microorganisms and released during the degradation process. The electrons are transferred along the external circuit to the biocathode on the surface of the bed (higher ORP) to complete the redox reaction. This article summarizes the research progress of the microbial fuel cell-constructed wetland coupling system from two aspects: system structure and factors affecting system operation. The system structure includes electrode materials, substrates, wetland plants and microorganisms. The influencing factors include HRT, DO, organic matter concentration and wastewater composition, electrode structure. Finally, the problems and research directions of the microbial fuel cell-constructed wetland coupling system are summarized, and the research potential of the system is prospected.


2021 ◽  
Vol 30 (6) ◽  
pp. 5285-5295
Author(s):  
Qiong Wan ◽  
Yingchun Ren ◽  
Cen Wang ◽  
Xinyan Zhang ◽  
Kai Ju ◽  
...  

2020 ◽  
Vol 81 (4) ◽  
pp. 631-643 ◽  
Author(s):  
Huang Jingyu ◽  
Nicholas Miwornunyuie ◽  
David Ewusi-Mensah ◽  
Desmond Ato Koomson

Abstract Constructed wetland coupled microbial fuel cell (CW-MFC) systems integrate an aerobic zone and an anaerobic zone to treat wastewater and to generate bioenergy. The concept evolves based on the principles of constructed wetlands and plant MFC (one form of photosynthetic MFC) technologies, of which all contain plants. CW-MFC have been used in a wide range of application since their introduction in 2012 for wastewater treatment and electricity generation. However, there are few reports on the individual components and their performance on CW-MFC efficiency. The performance and efficiency of this technology are significantly influenced by several factors such as the organic load and sewage composition, hydraulic retention time, cathode dissolved oxygen, electrode materials and wetland plants. This paper reviews the influence of the macrophyte (wetland plants) component, substrate material, microorganisms, electrode material and hydraulic retention time (HRT) on CW-MFC performance in wastewater treatment and electricity generation. The study assesses the relationship between these parameters and discusses progress in the development of this integrated system to date.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Chin-Tsan Wang ◽  
Yan-Ming Chen ◽  
Zhao-Qin Qi ◽  
Yung-Chin Yang

The improvement of electrode materials used in microbial fuel cell (MFC) technology for enhancing the power performance of MFCs has attracted more and more attention lately. In this study, an new electrode material with a carbon nanotube planted on an Ni-based alloy substrate is applied to the MFC. Results show that a well-synthesized, straight CNT electrode performs the best, with a high open circuit voltage of 0.82 V and a maximum power density of 2.31 W/m2. It is believed that this new kind of electrode will have a promising future in the technology of power generation from MFCs.


Sign in / Sign up

Export Citation Format

Share Document