scholarly journals IRF2 Destabilizes Oncogenic KPNA2 to Modulate the Tumorigenesis of Osteosarcoma via Regulating NF-κB/p65

Author(s):  
Shuchi Xia ◽  
Yiqun Ma

Abstract Background: Osteosarcomas (OS) are the most frequent primary malignant bone tumor. Emerging evidence revealed that karyopherin alpha 2 (KPNA2) was strongly associated with the tumorigenesis and development of numerous human cancers. The aim of the present study was to investigate the expression pattern, biological functions and underlying mechanism of KPNA2 in OS. Methods: Bioinformatics TFBIND online was applied to forecast the transcription factor (TF) binding sites in the promoter region of KPNA2. The expression profile of KPNA2 in OS tissues were firstly assessed using TARGET dataset. The expression of KPNA2 in clinical OS samples and normal human adjacent samples were analyzed by RT-qPCR and western blot. CCK8, colony formation, wound-healing, and Transwell assays were used to assess cell viability, proliferation and migration in vitro, and in vivo experiments were performed to explore the effects of KPNA2 and interferon regulatory factor-2 (IRF2) on tumor growth. In addition, the correlation between IRF2 and KPNA2, and their roles on the NF-κB/p65 was investigated using chromatin immunoprecipitation (ChIP), RT-qPCR, western blot and dual-luciferase assays. Results: KPNA2 was obviously upregulated while IRF2 was significantly decreased in OS tissues and cell lines, as well as they were negatively correlated with each other. KPNA2 knockdown remarkably suppressed OS cell growth, migration, invasion in vitro and tumor growth in vivo, while IRF2 knockdown exerts an opposing effect. IRF2 binds to KPNA2 promoter to modulate the tumorigenic malignant phenotypes of OS via regulating NF-κB/p65 signaling. Conclusion: The present study demonstrated that KPNA2 performed the oncogenic function, possibly regulating tumorigenesis through NF-κB/p65 signaling pathway. Importantly, IRF2 was confirmed to serve a potential upstream TF of KPNA2 involving in the regulation of NF-κB/p65 pathway in OS.

2021 ◽  
Vol 30 ◽  
pp. 096368972110255
Author(s):  
Qing Wang ◽  
Kai Li ◽  
Xiaoliang Li

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Increasing evidence suggests that long non-coding RNAs (lncRNAs) function in the tumorigenesis of NSCLC. LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in several cancers. However, its specific role in NSCLC remains unclear. In this study, we determined the expression of LINC00958 in NSCLC by RT-qPCR analysis and evaluated cell proliferation and migration by CCK-8 and transwell assays, respectively. We established a xenograft tumor model to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A. We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Besides, miR-204-3p was identified as a target of LINC00958 and miR-204-3p inhibitor could reverse the inhibitory effect of LINC00958 knockdown on proliferation and migration of NSCLC cells. We also validated that KIF2A, a direct target of miR-204-3p, was responsible for the biological role of LINC00958. KIF2A antagonized the effect of miR-204-3p on NSCLC cell proliferation and migration and was regulated by LINC00958/miR-204-3p. Taken together, these data indicate that the LINC00958/miR-204-3p/KIF2A axis is critical for NSCLC progression, which might provide a potential therapeutic target of NSCLC.


2019 ◽  
Vol 316 (3) ◽  
pp. L547-L557 ◽  
Author(s):  
Ruifeng Zhang ◽  
Hua Su ◽  
Xiuqing Ma ◽  
Xiaoling Xu ◽  
Li Liang ◽  
...  

Angiotensin-converting enzyme 2 (ACE2) protects against hypoxic pulmonary hypertension (HPH) by inhibiting the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). Under hypoxia, the hypoxia-inducible factor 1α (HIF-1α) inhibits ACE2 indirectly; however, the underlying mechanism is unclear. In the present study, we found that exposure to chronic hypoxia stimulated microRNA (miRNA) let-7b expression in rat lung via a HIF-1α-dependent pathway. Let-7b downregulated ACE2 expression by directly targeting the coding sequence of ACE2. Our in vitro and in vivo results revealed that let-7b contributed to the pathogenesis of HPH by inducing PASMCs proliferation and migration. Let-7b knockout mitigated right ventricle hypertrophy and pulmonary vessel remodeling in HPH by restoring ACE2 expression. Overall, we demonstrated that HIF-1α inhibited ACE2 expression via the HIF-1α-let-7b-ACE2 axis, which contributed to the pathogenesis of HPH by stimulating PASMCs proliferation and migration. Since let-7b knockout alleviated the development of HPH, let-7b may serve as a potential clinical target for the treatment of HPH.


2017 ◽  
Vol 42 (4) ◽  
pp. 1670-1683 ◽  
Author(s):  
Yiran Si ◽  
Haiyang Zhang ◽  
Tao Ning ◽  
Ming Bai ◽  
Yi Wang ◽  
...  

Background/Aims: Abnormal expression of HGF is found in various cancers and correlates with tumor proliferation, metastasis and angiogenesis. However, the regulatory mechanism of the HGF-VEGF axis remains unclear. Methods: The expression characteristic of HGF in human gastric cancer tissues was shown by an immunohistochemistry assay, and the expression levels of target protein were detected by Western blot. The relative levels of miR-26a/b and target mRNA were examined by qRT-PCR. We used bioinformatics tools to search for miRNAs that can potentially target HGF. A luciferase assay was used to confirm direct targeting. Furthermore, the functions of miR-26a/b and HGF were evaluated by cell proliferation and migration assays in vitro and by the mouse xenograft tumor model in vivo. Results: We found that the HGF protein was clearly increased while miR-26a/b were dramatically down-regulated in gastric cancer. miR-26a/b directly bind to the 3’-UTR of HGF mRNA at specific targeting sites. We demonstrated that the repression of the HGF-VEGF pathway by miR-26a/b overexpression suppressed gastric cancer cell proliferation and migration. Furthermore, miR-26a/b also showed an anti-tumor effect in the xenograft mouse model by suppressing tumor growth and angiogenesis. Conclusions: miR-26a/b could suppress tumor tumorigenesis and angiogenesis by targeting the HGF-VEGF axis and could serve as a potential treatment modality for targeted therapy in the clinical treatment of gastric cancer.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Guijun He ◽  
Wenfeng Yao ◽  
Liang Li ◽  
Yang Wu ◽  
Guojian Feng ◽  
...  

Abstract Background LOXL1-AS1 is a long non-coding RNA (lncRNA) that plays crucial roles in various cancers. However, the functional role of LOXL1-AS1 in laryngocarcinoma remains unclear. Thus we planned to probe into the function and underlying mechanism of LOXL1-AS1 in laryngocarcinoma. Methods Gene expression was evaluated in laryngocarcinoma cells using RT-qPCR. The ability of cell proliferation and migration was assessed by CCK8, colony formation, wound healing and transwell assays. The interaction among LOXL1-AS1, miR-589-5p and TRAF6 was detected by Ago2-RIP, RNA pull down and luciferase reporter assays. Results LOXL1-AS1 was overexpressed in laryngocarcinoma cells. Silencing of LOXL1-AS1 suppressed cell proliferation, migration and EMT in laryngocarcinoma. Moreover, miR-589-5p, the downstream of LOXL1-AS1, directly targeted TRAF6 in laryngocarcinoma. Importantly, LOXL1-AS1 augmented TRAF6 expression in laryngocarcinoma cells by sequestering miR-589-5p. Besides, miR-589-5p worked as a tumor-inhibitor while TRAF6 functioned as a tumor-facilitator in laryngocarcinoma. Of note, rescue experiments both in vitro and in vivo validated that LOXL1-AS1 aggravated the malignancy in laryngocarcinoma by targeting miR-589-5p/TRAF6 pathway. Conclusions LOXL1-AS1 promotes the proliferation and migration of laryngocarcinoma cells through absorbing miR-589-5p to upregulate TRAF6 expression.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3430
Author(s):  
Chifei Kang ◽  
Ran Rostoker ◽  
Sarit Ben-Shumel ◽  
Rola Rashed ◽  
James Andrew Duty ◽  
...  

TMEM176B is a member of the membrane spanning 4-domains (MS4) family of transmembrane proteins, and a putative ion channel that is expressed in immune cells and certain cancers. We aimed to understand the role of TMEM176B in cancer cell signaling, gene expression, cell proliferation, and migration in vitro, as well as tumor growth in vivo. We generated breast cancer cell lines with overexpressed and silenced TMEM176B, and a therapeutic antibody targeting TMEM176B. Proliferation and migration assays were performed in vitro, and tumor growth was evaluated in vivo. We performed gene expression and Western blot analyses to identify the most differentially regulated genes and signaling pathways in cells with TMEM176B overexpression and silencing. Silencing TMEM176B or inhibiting it with a therapeutic antibody impaired cell proliferation, while overexpression increased proliferation in vitro. Syngeneic and xenograft tumor studies revealed the attenuated growth of tumors with TMEM176B gene silencing compared with controls. We found that the AKT/mTOR signaling pathway was activated or repressed in cells overexpressing or silenced for TMEM176B, respectively. Overall, our results suggest that TMEM176B expression in breast cancer cells regulates key signaling pathways and genes that contribute to cancer cell growth and progression, and is a potential target for therapeutic antibodies.


2013 ◽  
Vol 20 (3) ◽  
pp. 305-319 ◽  
Author(s):  
Georg Hilfenhaus ◽  
Andreas Göhrig ◽  
Ulrich-Frank Pape ◽  
Tabea Neumann ◽  
Henning Jann ◽  
...  

Placental growth factor (PlGF), a VEGF-homolog implicated in tumor angiogenesis and adaptation to antiangiogenic therapy, is emerging as candidate target in malignancies. Here, we addressed the expression, function, and prognostic value of PlGF in neuroendocrine tumors (NETs). PlGF was determined in NET patients' sera collected retrospectively (n=88) and prospectively (n=87) using Roche-Elecsys and correlated with clinicopathological data. Tumoral PlGF was evaluated by immunohistochemistry, effects of PlGF on proliferation and migration in vitro were assessed using different NET cell lines and effects on tumor growth in vivo in orthotopic xenografts. Circulating and tumoral PlGF was elevated in patients with pancreatic NETs (pNETs) compared with control sera and respective healthy tissue. De novo PlGF expression occurred primarily in the tumor stroma, suggesting paracrine stimulatory circuits. Indeed, PlGF enhanced NET proliferation and migration in vitro and, conversely, neutralizing antibodies to PlGF reduced tumor growth in vivo. Elevated circulating PlGF levels in NET patients correlated with advanced tumor grading and were associated with reduced tumor-related survival in pNETs. Subsequent determinations confirmed and extended our observation of elevated PlGF levels in a prospective cohort of grade 1 and grade 2 pNETs (n=30) and intestinal NETs (n=57). In low-grade pNETs, normal circulating PlGF levels were associated with better survival. In intestinal NETs, circulating PlGF above median emerged as an independent prognostic factor for shorter time-to-progression in multivariate analyses. These data assign to PlGF a novel function in the pathobiology of NETs and propose PlGF as a prognostic parameter and therapeutic target.


2020 ◽  
Author(s):  
Hao Zhu ◽  
Shufang Cui ◽  
Gentao Fan ◽  
Jing Zhang ◽  
Xiaofeng Hua ◽  
...  

Abstract Background The Ras-like guanosine triphosphatases (Ral GTPases) belongs to the Ras superfamily of small GTPases. Ras mutations occur in more than one in three human tumors. However, treatments acting directly on Ras post-translational modifications were developed and have been manufactured for many years, although they have demonstrated poor clinical performance. Ral GTPases include RalA and RalB, seem to be a new potential pathway downstream of mutant Ras. Methods In this study, we examined protein and mRNA level of Ral GTPases in lung specimens from 12 lung cancer patients using Western Blot and RT-PCR. The effects of RalA and RalB on the proliferation and migration were examined by functional tests in vitro and in vivo. The binding site in miR-215-5p and RalA or RalB was predicted using bioinformatics software and proved by Western Blot, RT-PCR and luciferase assay. The effect of miR-215-5p on RalA and RalB were examined in cell lines and xenograft mice. Results Here, we reported that miR-215-5p was downregulated in human lung cancer tissues compared with noncancerous tissues, whereas the expression level of Ral GTPases was higher. We further verified that the negative regulation of Ral GTPases by miR-215-5p could inhibit the proliferation and migration of lung cancer in vitro and in vivo. Conclusion In this study, we reported that RalA and RalB promote lung cancer proliferation and migration. Moreover, we identified miR-215-5p as a tumor suppressor that targets Ral GTPases. Our results may offer therapeutic opportunities in lung cancer.


2020 ◽  
Author(s):  
Guan-Bin Qi ◽  
Lei Li

Abstract Background: LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in multiple cancers. However, its specific role in non-small cell lung cancer (NSCLC) remains unclear.Methods: The expression of LINC00958 was determined by RT-qPCR analysis. Cell proliferation and migration were evaluated by CCK-8 and transwell assays, respectively. Xenograft tumor models were established to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A.Results: We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Mechanically, we revealed that LINC00958 influenced NSCLC progression partly by sponging miR-204-3p and regulating KIF2A expression.Conclusions: Our study provided new insights into the role of LINC00958 as a promising prognostic biomarker and a therapeutic target for NSCLC.


2012 ◽  
Vol 30 (4_suppl) ◽  
pp. 234-234
Author(s):  
Katherine Ostapoff ◽  
Niranjan Awasthi ◽  
Roderich Schwarz ◽  
Rolf A. Brekken

234 Background: Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to conventional chemotherapy, as result there is an ongoing search to find novel effective strategies. Resistance is due in part to the high proportion of stromal tissue within the primary tumor. This intricate ECM (extracellular matrix) includes heparan-sulfate glycosaminoglycans which participate in tumor progression, angiogenesis and metastasis. PG545 is a heparanase inhibitor developed to target these pathways. Methods: In vitro cell viability assays were performed using WST-1 reagent and migration was evaluated using T- scratch assay. Animal survival experiments were performed by intraperitoneal injection of AsPC-1 (0.75 x 10^6) cells. In vivo tumor growth experiments were performed by orthotopic injection of PanO2-HY (5x10^5) cells. Results: PG545 significantly inhibited proliferation of tumor cells (AsPC-1 and PanO2) and fibroblasts (WI-38). PG545 caused only a modest inhibition in endothelial cell (HUVECs) proliferation. Migration was significantly inhibited by 1 µM PG545 in AsPC-1 and PanO2 after 12 hours. In a metastatic model of pancreatic cancer, treatment with PG545 (10 mg/kg 1st week, 5 mg/kg 2nd week) improved survival (35 days) compared to saline (22 days) and gemcitabine (28 days). In an immunocompetent orthotopic model, mice treated with PG545 (5 mg/kg twice weekly) had significantly decreased tumor weights after 3 weeks of therapy (p=0.002). Total metastatic events were also reduced in PG545 compared to gemcitabine and control treatment in the PanO2 model. Conclusions: PG545 inhibits tumor cell proliferation and migration in vitro and prolongs survival and inhibits tumor growth in vivo. Additionally it inhibits metastasis in vivo. Further studies are underway to elucidate the mechanism of inhibition and changes to pancreatic tumor microenvironment.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jianye Xu ◽  
Jian Zhang ◽  
Zongpu Zhang ◽  
Zijie Gao ◽  
Yanhua Qi ◽  
...  

AbstractExosomes participate in intercellular communication and glioma microenvironment modulation, but the exact mechanisms by which glioma-derived exosomes (GDEs) promote the generation of the immunosuppressive microenvironment are still unclear. Here, we investigated the effects of GDEs on autophagy, the polarization of tumor-associated macrophages (TAMs), and glioma progression. Compared with normoxic glioma-derived exosomes (N-GDEs), hypoxic glioma-derived exosomes (H-GDEs) markedly facilitated autophagy and M2-like macrophage polarization, which subsequently promoted glioma proliferation and migration in vitro and in vivo. Western blot and qRT-PCR analyses indicated that interleukin 6 (IL-6) and miR-155-3p were highly expressed in H-GDEs. Further experiments showed that IL-6 and miR-155-3p induced M2-like macrophage polarization via the IL-6-pSTAT3-miR-155-3p-autophagy-pSTAT3 positive feedback loop, which promotes glioma progression. Our study clarifies a mechanism by which hypoxia and glioma influence autophagy and M2-like macrophage polarization via exosomes, which could advance the formation of the immunosuppressive microenvironment. Our findings suggest that IL-6 and miR-155-3p may be novel biomarkers for diagnosing glioma and that treatments targeting autophagy and the STAT3 pathway may contribute to antitumor immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document