scholarly journals Evaluation of Small Hydropower Plant at Ribb Irrigation Dam in Amhara Regional State, Ethiopia

2020 ◽  
Author(s):  
ADDISU WORKU BEZABIH

Abstract Background: Energy is the main requirement for economic growth in any country and also supports the modern economy. The energy sector is considered a vital element in developing countries because it meets energy needs. This article deals with the production of electricity using small hydroelectric power plants for rural applications. The main objective of this study was to assess the potential of the Ribb dam for small hydroelectric plants. Since the height of a proposed site is constant while the available flow is very variable, the flow is very important for the production of hydroelectricity. Result: The flow duration curve is constant from 20% to 50% of the nominal flow, and then decreases as the percentage of the nominal flow increases. The Ribb dam concluded that the average flow of 14.6331m3/s, the smooth head of 70.37 m, and the average nominal power of 5.53 MW would be the most optimal size of a small hydroelectric plant producing a maximum of electricity in the context of future projected flows in the study region. Conclusion: SHP is a promising alternative for the production of cheap and renewable energy in rural or developing areas.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Addisu Worku Bezabih

Abstract Background Energy is the main requirement for economic growth in any country and supports the modern economy. The energy sector is considered a vital element in developing countries because it meets energy needs. This article addresses the production of electricity using small hydroelectric power plants for rural applications. The main objective of this study was to assess the potential of the Ribb dam for small hydroelectric plants. The flow is very important for the production of hydroelectricity as the height of a proposed site is constant and the available flow is very variable. Result The flow duration curve is constant and it will vary from 20 to 50% from the nominal flow. Further, it will decrease when the percentage of the nominal flow increases. The best size of a small hydroelectric plant producing a maximum of electricity in the context of future projected flows in the study region. Further, the Ribb dam concluded that the average flow of 14.6331 m3/s, the smooth head of 70.37 m, and the average nominal power of 5.53 MW. Conclusion Small hydro system (SHP) is a promising alternative for the production of cheap and renewable energy in rural or developing areas.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 266
Author(s):  
Md Rakibuzzaman ◽  
Sang-Ho Suh ◽  
Hyoung-Ho Kim ◽  
Youngtae Ryu ◽  
Kyung Yup Kim

Discharge water from fish farms is a clean, renewable, and abundant energy source that has been used to obtain renewable energy via small hydropower plants. Small hydropower plants may be installed at offshore fish farms where suitable water is obtained throughout the year. It is necessary to meet the challenges of developing small hydropower systems, including sustainability and turbine efficiency. The main objective of this study was to investigate the possibility of constructing a small hydropower plant and develop 100 kW class propeller-type turbines in a fish farm with a permanent magnet synchronous generator (PMSG). The turbine was optimized using a computer simulation, and an experiment was conducted to obtain performance data. Simulation results were then validated with experimental results. Results revealed that streamlining the designed shape of the guide vane reduced the flow separation and improved the efficiency of the turbine. Optimizing the shape of the runner vane decreased the flow rate, reducing the water power and increasing the efficiency by about 5.57%. Also, results revealed that tubular or cross-flow turbines could be suitable for use in fish farm power plants, and the generator used should be waterproofed to avoid exposure to seawater.


2011 ◽  
Vol 3 (2) ◽  
pp. 171-186 ◽  
Author(s):  
Weddy Bernadi Sudirman ◽  
Sarwono Hardjomuljadi

The development of hydroelectric power plant is one of the efforts in utilising water resources for people’s welfare by generating the energy for electricity purpose. Nowadays, the installed capacity of hydro electric power plants is 3,529 MW from the total installed capacity 24,846 MW from various power plants owned by PT PLN (Persero) and the hydropower potential 75,000 MW all over Indonesia. Hydroelectric power plant has complex structures and involves large amounts of capital with a long-running construction period. This situation imposes uncertainty factors with considerably high risks. The construction phase is identified as a critical phase in hydropower projects where many unforeseen factors occur. Failure to manage project risks leads to significant problems for the client such as completion time delays and cost overruns. In order to prevent time delays and cost overruns in hydropower construction in PT PLN (Persero), the study on project risk management in the construction stage of hydropower plant projects had been conducted. The purpose of this study was to identify and measure the importance of construction risks and to determine the level of agreement or disagreement between the client, consultants and contractors on the ranking of construction risk in hydropower projects. The author selected the respondents from the clients, consultants and contractors’ personnel who had work experience in hydropower construction projects in PT PLN (Persero). JEL Classification: L74—Construction


1994 ◽  
Vol 5 (2) ◽  
pp. 149-158
Author(s):  
Javier Escudero

Improvements in existing hydroelectric power plants can increase quantity of production, but very often they are also designed to improve its quality, that is, peak generation capacity and availability of reserve energy, which in turn leads to a reduction of emissions in the producer part. An adequate valuation and economic recognition of the energy quality in remuneration seems essential to encourage these improvements. Frequent size discrimination acts against this recognition, because quality of energy is more often present in conventional-sized installations.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Kaufui Vincent Wong

There is a controversy brewing for about 10 years that hydroelectric power plants are not a clean, renewable source of electricity. The current review indicates that the source of methane is not in the mechanics or mechanical design of the equipment used. The source of the methane is from nature, and man's failure to do the right thing. This methane may be reduced or completely eliminated. If this cannot be accomplished or if it is too expensive to retrofit the hydroelectric plant, then the deep water may be preprocessed (and the methane collected) before being used in the water turbine. Several methods have been introduced and discussed. Details have been omitted so that practicing engineers and other professionals can obtain funds to research and develop or invent the practical solutions suited to conditions local to the problem.


2018 ◽  
Vol 1 (2) ◽  
pp. 293-303
Author(s):  
Diego Fernando Rodríguez-Galán ◽  
Andrés Escobar-Díaz

In this study a presentation is made of the Small Hydroelectric Power Plant (PCH) located in Usaquén (Bogota), the work is based on an engineering project carried out by the Aqueduct and Sewer Company of Bogotá (EAAB). It is addressed first of all the environmental problems considered in this project and the business context that propitiates it, taking into account the technical background of the operation of the aqueduct system of the city. In second instance, the technical generalities and the scopes that were estimated in the formulation of the project are exposed to finally contrast them with the results obtained after five years of operation of the project.


2021 ◽  
pp. 57-65
Author(s):  
O. N. CHERNYH ◽  
◽  
A. V. BURLACHENKO ◽  
V. V. VOLSHANIK

The issues of solving modern problems related to meeting the energy needs of environmental hydraulic engineering are considered. The problem of improving the methodological basis for choosing the optimal arrangement of elements of photovoltaic devices (SPEU) on the blocks of the dam building of hydroelectric power plants (HPP) of 4 main types is formulated. The graphical dependences of the estimation of the power ratio of the combined SPEU and HPP on the diameter of the turbine wheel are analyzed. As a result of the analysis of the influence of the location of the transformer on the possibility of placing the SPEU on the buildings of the hydroelectric power station, it was revealed that in order to increase the adaptability of the revitalized even large hydro system with a separate building of the hydroelectric power station, it is preferable to place power transformers from the downstream side. It is noted that according to the results of the schematic study for the medium-pressure hydroelectric complex Lagdo in the north of Cameroon, the placement of solar cells will provide an additional 6.95% of the capacity of the operating hydroelectric power station.


2017 ◽  
Vol 35 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Alina Kowalczyk-Juśko ◽  
Andrzej Mazur ◽  
Antoni Grzywna ◽  
Agnieszka Listosz ◽  
Roman Rybicki ◽  
...  

AbstractHydropower plants in Poland currently use only 19% of the river’s energy potential. Development of hydropower is limited by environmental regulations as well as by economic grounds. From the environmental point of view, it is desirable to build small hydropower plants integrated into the local landscape. This paper presents results of the research aimed at estimating the amount of energy that could be produced in the case of small hydroelectric power plants on weirs existing on the Tyśmienica River. There is also a legal framework that should be adapted at hydropower development. It was calculated that the technical capacity of the small hydropower plants that could be built on 4 existing weirs, is 0.131 MW. These power plants could produce 786 MWh of electricity per year. The economic efficiency of this production is currently difficult to assess, because a new support system for renewable energy sources is currently being implemented, which will be a decisive factor for entrepreneurs. It should be borne in mind that potential investments will be made in protected areas within the Natura 2000 network, which may limit their constructing or impose the obligation to assess their impact on selected environmental elements. Location within the protective area does not eliminate such investments, especially when solutions with the least possible environmental impact are used.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 184
Author(s):  
Pedro H. M. Nascimento ◽  
Vinícius A. Cabral ◽  
Ivo C. Silva Junior ◽  
Frederico F. Panoeiro ◽  
Leonardo M. Honório ◽  
...  

Hydroelectric power plants’ operational decisions are associated with several factors, such as generation planning, water availability and dam safety. One major challenge is to control the water spillage from the reservoir. Although this action represents a loss of energy production, it is a powerful strategy to regulate the reservoir level, ensuring the dam’s safety. The decision to use this strategy must be made in advance based on level and demand predictions. The present work applies supervised machine learning techniques to predict the operating condition of spillage in a hydroelectric plant for 5 h ahead. The use of this method, in real time, aims to assist the operator so that he can make more assertive and safer decisions, avoiding waste of energy resources and increasing the safety of dams. The Random Forest and Multilayer Perceptron methods were used to define the architecture compared to the forecasting capacity. The proposed methodology was applied to a 902.5 MW Hydroelectric Power Plant located on the Tocantins River, Brazil. The results demonstrate effective assistance to operators in the decision-making, presenting accuracy of up to 99.15% for the spill decision.


2020 ◽  
Vol 10 (14) ◽  
pp. 4842 ◽  
Author(s):  
Miguel Meque Uamusse ◽  
Kamshat Tussupova ◽  
Kenneth M Persson

The impact of climate change on the production of hydropower in Mozambique is reviewed and regression analysis is applied to evaluate future climate scenarios. The results show that climate change will cause increased variability of precipitation and create flooding that can damage infrastructure such as hydropower dams. Climate change can also cause drought that will decrease surface water and reduce hydroelectric generation in Mozambique. Electricity generation is to a major extent performed through large-scale hydropower in Mozambique. To fulfill the sustainable development goals (SDGs) and an increased demand for electricity, several large and many small hydropower projects are planned and were built in the country. The economic lifetime of a hydropower plant is typically 100 years, meaning that the hydrologic regimes for the plants should be evaluated for at least this period. Climate change effects are rarely included in present feasibility studies. Economic implications associated with climate change phenomena are higher in Mozambique than in neighboring countries as its future electricity demand to a large extent is forecasted to be met by hydropower. The large hydropower potential in Mozambique should as well be considered when investing in new power plants in southern Africa.


Sign in / Sign up

Export Citation Format

Share Document