Bifico Relieves Irritable Bowel Syndrome By Regulating Gut Microbiota Dysbiosis and Inflammatory Cytokines in an Animal Model

Author(s):  
Yanlin Zhou ◽  
Fan Zhang ◽  
Liqi Mao ◽  
Tongfei Feng ◽  
Kaijie Wang ◽  
...  

Abstract Gut microbiota dysbiosis, a core pathophysiology of irritable bowel syndrome (IBS), is closely related to immunological and metabolic functions. Gut microbiota-based therapeutics have been recently explored in several studies. Bifico is a probiotic cocktail widely used in gastrointestinal disorders which relate to the imbalance of gut microbiota. However, the efficacy and potential mechanisms of Bifico treatment in IBS remains incompletely understood. In this animal experiment, IBS mice received Bifico by intragastric administration. Subsequently, abdominal withdrawal reflex (AWR) scores showed a protective effect of Bifico in IBS mice. Then 16S rDNA, 1H nuclear magnetic resonance (1H-NMR) and western blot assays were performed to analyze alterations of gut microbiota, microbiome metabolites and inflammatory cytokines, respectively. Results suggested that while Bifico did not increase gut microbial diversity, it could change the composition of gut microbiota which were characterized by an increase of Proteobacteria phylum and Actinobacteria phylum, Muribaculum genera, Bifidobacterium genera and a decrease of Parabacteroides genera, Sutterella genera and Lactobacillus genera. Moreover, Bifico elevated the concentration of short-chain fatty acids (SCFAs) and reduced protein levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). From further Spearman's correlation analysis, Bifidobacterium genera were positively correlated with SCFAs including propionate, butyrate, valerate and negatively correlated with IL-6 and TNF-α. In conclusion, this study demonstrated that Bifico could alleviate symptoms of IBS mice through regulation of the gut microbiota, elevating production of SCFAs and reducing the colonic inflammatory response. Therefore, Bifico may have utility in clinical practice.

2021 ◽  
Author(s):  
Yang Liu ◽  
Wei Xiao ◽  
Leilei Yu ◽  
Fengwei Tian ◽  
Gang Wang ◽  
...  

Irritable bowel syndrome (IBS) is a chronic intestinal disorder accompanied by low-grade inflammation, visceral hypersensitivity, and gut microbiota dysbiosis. Several studies have indicated that Lactobacillus supplementation can help to alleviate...


2021 ◽  
Author(s):  
Zhijia Zhou ◽  
Lingxia Xu ◽  
Shaoliang Zhang ◽  
Shilin Xu ◽  
Yanmiao Yang ◽  
...  

Abstract Objective: Chlorogenic acid and geniposide (CG) are derived from traditional Chinese medicine, Yinchenhao Recipe (QCHR), and can improve the clinical efficacy of NASH patients. This study investigated the effects of CG on NASH and expounded its Potential mechanism of action through the LPS-TLR4 pathway and microbiota. Methods: Rats were randomized into Control (C), Model (M), Chlorogenic Acid and Geniposide (CG), Pioglitazone (PH) and Bifico (B) groups. After an 8-week high-fat diet (HFD), CG, PH and B oral treatment were initiated and carried out for a further 8 weeks. The stool samples were used in a16S rDNA V4 highly variable region measurement method in order to regulate the role of CG in gut microbiota. The concentrations of triglyceride (TG), cholesterol (CHO), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) in LPS were detected by the corresponding methods. Results: Observations were made that CG significantly improved the pathology of the liver and terminal ileum tissue. The accumulation of TG and the content of inflammatory cytokines in the liver were significantly decreased and the abundance of Proteobacteria was significantly down-regulated. The expression of TLR4, AP-1, MyD88, and phosphorylated NF-κB p65 were significantly decreased. All the findings above indicated that CG was highly effective in improving the composition of gut microbiota, decreasing the production of endogenous LPS, and reducing the secretion of inflammatory cytokines through the gut-liver axis.Conclusion: CG can regulate the abundance and diversity of the intestinal microbial community and improve liver inflammation and steatosis in NASH rats by reducing LPS-TLR4-mediated inflammation.


2018 ◽  
Vol 25 (32) ◽  
pp. 3930-3952 ◽  
Author(s):  
Roberto Russo ◽  
Claudia Cristiano ◽  
Carmen Avagliano ◽  
Carmen De Caro ◽  
Giovanna La Rana ◽  
...  

The human gut is a composite anaerobic environment with a large, diverse and dynamic enteric microbiota, represented by more than 100 trillion microorganisms, including at least 1000 distinct species. The discovery that a different microbial composition can influence behavior and cognition, and in turn the nervous system can indirectly influence enteric microbiota composition, has significantly contributed to establish the well-accepted concept of gut-brain axis. This hypothesis is supported by several evidence showing mutual mechanisms, which involve the vague nerve, the immune system, the hypothalamic-pituitaryadrenal (HPA) axis modulation and the bacteria-derived metabolites. Many studies have focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome (IBS) to neurodevelopmental disorders, such as autism, and to neurodegenerative diseases, such as Parkinson Disease, Alzheimer’s Disease etc. Based on this background, and considering the relevance of alteration of the symbiotic state between host and microbiota, this review focuses on the role and the involvement of bioactive lipids, such as the N-acylethanolamine (NAE) family whose main members are N-arachidonoylethanolamine (AEA), palmitoylethanolamide (PEA) and oleoilethanolamide (OEA), and short chain fatty acids (SCFAs), such as butyrate, belonging to a large group of bioactive lipids able to modulate peripheral and central pathologic processes. Their effective role has been studied in inflammation, acute and chronic pain, obesity and central nervous system diseases. A possible correlation has been shown between these lipids and gut microbiota through different mechanisms. Indeed, systemic administration of specific bacteria can reduce abdominal pain through the involvement of cannabinoid receptor 1 in the rat; on the other hand, PEA reduces inflammation markers in a murine model of inflammatory bowel disease (IBD), and butyrate, producted by gut microbiota, is effective in reducing inflammation and pain in irritable bowel syndrome and IBD animal models. In this review, we underline the relationship among inflammation, pain, microbiota and the different lipids, focusing on a possible involvement of NAEs and SCFAs in the gut-brain axis and their role in the central nervous system diseases.


2007 ◽  
Vol 292 (3) ◽  
pp. G779-G784 ◽  
Author(s):  
Kevin F. Foley ◽  
Cristen Pantano ◽  
Allison Ciolino ◽  
Gary M. Mawe

Recent studies have shown that mucosal serotonin (5-HT) transporter (SERT) expression is decreased in animal models of colitis, as well as in the colonic mucosa of humans with ulcerative colitis and irritable bowel syndrome. Altered SERT function or expression may underlie the altered motility, secretion, and sensation seen in these inflammatory gut disorders. In an effort to elucidate possible mediators of SERT downregulation, we treated cultured colonic epithelial cells (Caco2) with conditioned medium from activated human lymphocytes. Application of the conditioned medium caused a decrease in fluoxetine-sensitive [3H]5-HT uptake. Individual proinflammatory agents were then tested for their ability to affect uptake. Cells were treated for 48 or 72 h with PGE2 (10 μM), IFN-γ (500 ng/ml), TNF-α (50 ng/ml), IL-12 (50 ng/ml), or the nitric oxide-releasing agent S-nitrosoglutathione (GSNO; 100 μM). [3H]5-HT uptake was then measured. Neither PGE nor IL-12 had any effect on [3H]5-HT uptake, and GSNO increased uptake. However, after 3-day incubation, both TNF-α and IFN-γ elicited significant decreases in SERT function. Neither TNF-α nor IFN-γ were cytotoxic when used for this period of time and at these concentrations. These two cytokines also induced decreases in SERT mRNA and protein levels. By altering SERT expression, TNF-α and IFN-γ could contribute to the altered motility and expression seen in vivo in ulcerative colitis or irritable bowel syndrome.


Author(s):  
Lin Xiao ◽  
Qin Liu ◽  
Mei Luo ◽  
Lishou Xiong

Irritable bowel syndrome (IBS) is the most common functional bowel disorder worldwide and is associated with visceral hypersensitivity, gut motility, immunomodulation, gut microbiota alterations, and dysfunction of the brain-gut axis; however, its pathophysiology remains poorly understood. Gut microbiota and its metabolites are proposed as possible etiological factors of IBS. The aim of our study was to investigate specific types of microbiota-derived metabolites, especially bile acids, short-chain fatty acids, vitamins, amino acids, serotonin and hypoxanthine, which are all implicated in the pathogenesis of IBS. Metabolites-focused research has identified multiple microbial targets relevant to IBS patients, important roles of microbiota-derived metabolites in the development of IBS symptoms have been established. Thus, we provide an overview of gut microbiota and their metabolites on the different subtypes of IBS (constipation-predominant IBS-C, diarrhea-predominant IBS-D) and present controversial views regarding the role of microbiota in IBS.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2159
Author(s):  
Ran Yan ◽  
Lesley Andrew ◽  
Evania Marlow ◽  
Kanita Kunaratnam ◽  
Amanda Devine ◽  
...  

Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder affecting 4–5% of the global population. This disorder is associated with gut microbiota, diet, sleep, and mental health. This scoping review therefore aims to map existing research that has administrated fibre-related dietary intervention to IBS individuals and reported outcomes on at least two of the three following themes: gut microbiota, sleep, and mental health. Five digital databases were searched to identify and select papers as per the inclusion and exclusion criteria. Five articles were included in the assessment, where none reported on all three themes or the combination of gut microbiota and sleep. Two studies identified alterations in gut microbiota and mental health with fibre supplementation. The other three studies reported on mental health and sleep outcomes using subjective questionnaires. IBS-related research lacks system biology-type studies targeting gut microbiota, sleep, and mental health in patients undergoing diet intervention. Further IBS research is required to explore how human gut microbiota functions (such as short-chain fatty acids) in sleep and mental health, following the implementation of dietary pattern alteration or component supplementation. Additionally, the application of objective sleep assessments is required in order to detect sleep change with more accuracy and less bias.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1349
Author(s):  
Bo Yang ◽  
Mingjie Li ◽  
Shuo Wang ◽  
R. Paul Ross ◽  
Catherine Stanton ◽  
...  

Lactobacillus ruminis can stimulate the immune response in vitro, but previous studies were only carried out in vitro and the anti-inflammatory effects of L. ruminis needs more in vivo evidences. In this study, the immune regulation and potential mechanisms of L. ruminis was investigated in DSS-induced colitis mice. L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 relieved the symptoms of colitis, including inhibition of colon shortening and colon tissue damage. L. ruminis FXJWS27L3 significantly reduced the pro-inflammatory cytokines IL-1β, TNF-α, and IL-17, while L. ruminis FXJSW17L1 significantly increased short chain fatty acids in mice feces. Moreover, L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 treatments significantly increased the gut microbiota diversity and balance the intestine microbiota profiles, which improved the imbalance of intestine microbiota composition to a certain extent. The results showed that L. ruminis can alleviate DSS-induced colitis, which possibly was related to promoting the expression of pro-inflammatory cytokines, up-regulating SCFAs and restoring the imbalance of gut microbiota.


2020 ◽  
Vol 134 (23) ◽  
pp. 3159-3174
Author(s):  
Zhiyuan Guan ◽  
Jialin Jia ◽  
Chenggui Zhang ◽  
Tiantong Sun ◽  
Wang Zhang ◽  
...  

Abstract Gut microbiota dysbiosis has been studied under the pathological conditions of osteoarthritis (OA). However, the effect of antibiotic-induced gut flora dysbiosis on OA remains incompletely understood at present. Herein, we used a mouse (8 weeks) OA model of destabilization of the medial meniscus (DMM) and gut microbiome dysbiosis induced by antibiotic treatment with ampicillin and neomycin for 8 weeks. The results show that antibiotic-induced intestinal microbiota dysbiosis reduced the serum level of lipopolysaccharide (LPS) and the inflammatory response, such as suppression of the levels of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), which can lead to decreased matrix metalloprotease-13 (MMP-13) expression and improvement of OA after joint injury. In addition, trabecular thickness (Tb.Th) and osteophyte scores were increased significantly in antibiotic-induced male mice compared with female mice. We further used network correlation analysis to verify the effect of gut microbiota dysbiosis on OA. Therefore, the present study contributes to our understanding of the gut–joint axis in OA and reveals the relationship between the inflammatory response, sex and gut microbiota, which may provide new strategies to prevent the symptoms and long-term sequelae of OA. Conclusion: Our data showed that gut microbiome dysbiosis alleviates the progression of OA.


Sign in / Sign up

Export Citation Format

Share Document