scholarly journals Research and Design the Thrust Fluctuation of Slotted-Tubular Permanent Magnet Linear Motor: an application on low frequency plastic forming equipment

Author(s):  
Jingzhou Gao ◽  
Jingxiang Li ◽  
Shengdun Zhao ◽  
Wei Du ◽  
Fei Jiang ◽  
...  

Abstract In this paper, a novel type of low frequency vibration plastic forming equipment is proposed, in which the slotted tubular permanent magnet synchronous liner motor (slotted – TPMLM) is the core component and plays the roles of power source and vibration source. So, this paper focuses on the research about the design of the slotted - TPMLM. The suppression and optimization of motor thrust fluctuation has always been a hot research issue. But that is not the purpose of this article. Here, the effect of the length of stator core on end force and the influence of the number of poles and slots on the cogging force are discussed in detail. The purpose is to design the thrust fluctuation of slotted – TPMLM reasonably so that the thrust fluctuation can be used in the low frequency plastic forming. The slotted – TPMLM is designed, manufactured, and tested. The experimental results show that the motor can output thrust with periodic fluctuation (low frequency, about 4.8 Hz), and the thrust fluctuation accounts for about 16.5% of the average thrust, which meets the metal low frequency vibration plastic forming requirements. Consequently, the low frequency vibration plastic forming equipment can be realized, which contributes to the field of the plastic forming.

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110087
Author(s):  
Feng Zhou ◽  
Han Zhao ◽  
Xiaoke Liu ◽  
Fujia Wang

Permanent magnet linear motors can cause thrust fluctuation due to cogging and end effects, which will affect the operation stability of the linear motor. In order to solve this problem, a new method of eliminating alveolar force by using phase-shifting and displacement is proposed in this paper. Taking the cylindrical permanent magnet linear motor as an example, the traditional cylindrical permanent magnet linear motor is divided into two unit-motors, and established finite element analysis model of cylindrical permanent magnet linear motor. It is different from other traditional methods, the thrust fluctuation was reduced by both phase-shifting and displacement simultaneously in this paper, and through simulation analysis, it is determined that the thrust fluctuation suppression effect was the best when the cogging distance was shifted by half. Furthermore, a comparative simulation was made on whether the magnetic insulating material was used. The simulation results show that: The method proposed in this paper can effectively suppress the thrust fluctuation of the cylindrical permanent magnet linear motor. And it can be applied to other similar motor designs. Compared with the traditional method of suppressing thrust fluctuation, the mechanical structure and the technological process of suppressing thrust fluctuation used in this method are simpler.


2014 ◽  
Vol 625 ◽  
pp. 149-154 ◽  
Author(s):  
Ivan Burdukovskyi ◽  
Jun'ichi Kaneko ◽  
Kenichiro Horio

Micro deep drilling of hard materials is required to involve step feed in process that grows up machining time. To increase the step feed, a method with low frequency vibration (frequency ~190 Hz, amplitude ~10 μm) by oscillating of workpiece has been proposed. Previous study is focused on method of 1-axis drilling process assisted by low frequency vibration. Introducing the method with low frequency vibration to 2-axis drilling process on a curved surface is required to oscillate the workpiece in two dimensions. Purpose of our study is to design fixing system with the 2-dimansional low frequency vibration. Vibration source is needed to change for providing the 2-dimansional vibration. Fixing system for 2-dimensional vibration (FS2DV) consists of two vibration sources in horizontal and vertical directions with spring systems along it action. The 2-dimensional vibration is controlled by amplitude ratio of the vibrations from each source. As a result, we have succeeded low frequency vibration of the workpiece with assigned direction. The resulting vibration is verified (measuring of instantaneous horizontal and vertical displacements).


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2770 ◽  
Author(s):  
Iman Izadgoshasb ◽  
Yee Lim ◽  
Ricardo Vasquez Padilla ◽  
Mohammadreza Sedighi ◽  
Jeremy Novak

Harvesting electricity from low frequency vibration sources such as human motions using piezoelectric energy harvesters (PEH) is attracting the attention of many researchers in recent years. The energy harvested can potentially power portable electronic devices as well as some medical devices without the need of an external power source. For this purpose, the piezoelectric patch is often mechanically attached to a cantilever beam, such that the resonance frequency is predominantly governed by the cantilever beam. To increase the power generated from vibration sources with varying frequency, a multiresonant PEH (MRPEH) is often used. In this study, an attempt is made to enhance the performance of MRPEH with the use of a cantilever beam of optimised shape, i.e., a cantilever beam with two triangular branches. The performance is further enhanced through optimising the design of the proposed MRPEH to suit the frequency range of the targeted vibration source. A series of parametric studies were first carried out using finite-element analysis to provide in-depth understanding of the effect of each design parameters on the power output at a low frequency vibration. Selected outcomes were then experimentally verified. An optimised design was finally proposed. The results demonstrate that, with the use of a properly designed MRPEH, broadband energy harvesting is achievable and the efficiency of the PEH system can be significantly increased.


Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


Sign in / Sign up

Export Citation Format

Share Document