scholarly journals A Novel Framework for Efficient Multiple Signature on Certificate with Database Security

Author(s):  
Sarvesh Tanwar ◽  
Sumit Badotra ◽  
Ajay Rana

Abstract PKI gives undeniable degree of safety by transferring the key pair framework among the clients. By constructing, a PKI we combine digital identities with the digital signatures, which give an end-to-end trust model. Basically, PKI is an attempt, which can simulate the real-world human analyzation of identity and reliability in a computerized fashion. In any case, the existing applications are centered on a tight trust model which makes them inadequate as an overall device for trust examination. After years of research, development and deployment, PKI still facing strong technical and organizational challenges such as attacks against Certificate Authorities (CA). CAs are the primitive component of PKIs which plays powerful role in the PKI model. CA must be diligent, creditable and legitimate. In any case, a technocrat who picks up control on a CA can use CA's certificate to issue bogus certificate and impersonate any site, such as - DigiNotar, GobalSign, Comodo and DigiCert Malaysia. In this paper we proposed an approach to reduce the damage of compromised CA/CA’s key by imposing Multiple Signatures (MS) after verifying/authenticating user’s information. One single compromised CA is not able to issue a certificate to any domain as multiple signatures are required. Private key and other perceptive information are stored in the form of object/blob. Without knowing the structure of class no one can access the object and object output stream. Proposed MS achieve better performance over existing MS schemes and control fraudulent certificate issuance with more database security. The proposed scheme also avoids MITM attack against CA who is issuing certificate to whom which is using the following parameters such as identity of Sender, Receiver, Timestamp and Aadhar number.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2416
Author(s):  
Marina Dorokhova ◽  
Fernando Ribeiro ◽  
António Barbosa ◽  
João Viana ◽  
Filipe Soares ◽  
...  

The energy efficiency requirements of most energy-consuming sectors have increased recently in response to climate change. For buildings, this means targeting both facility managers and building users with the aim of identifying potential energy savings and encouraging more energy-responsible behaviors. The Information and Communication Technology (ICT) platform developed in Horizon 2020 FEEdBACk project intends to fulfill these goals by enabling the optimization of energy consumption, generation, and storage and control of flexible devices without compromising comfort levels and indoor air quality parameters. This work aims to demonstrate the real-world implementation and functionality of the ICT platform composed of Load Disaggregation, Net Load Forecast, Occupancy Forecast, Automation Manager, and Behavior Predictor applications. Particularly, the results obtained by individual applications during the test phase are presented alongside the specific metrics used to evaluate their performance.


Author(s):  
Meng Lyu ◽  
Xiaofeng Bao ◽  
Yunjing Wang ◽  
Ronald Matthews

Vehicle emissions standards and regulations remain weak in high-altitude regions. In this study, vehicle emissions from both the New European Driving Cycle and the Worldwide harmonized Light-duty driving Test Cycle were analyzed by employing on-road test data collected from typical roads in a high-altitude city. On-road measurements were conducted on five light-duty vehicles using a portable emissions measurement system. The certification cycle parameters were synthesized from real-world driving data using the vehicle specific power methodology. The analysis revealed that under real-world driving conditions, all emissions were generally higher than the estimated values for both the New European Driving Cycle and Worldwide harmonized Light-duty driving Test Cycle. Concerning emissions standards, more CO, NOx, and hydrocarbons were emitted by China 3 vehicles than by China 4 vehicles, whereas the CO2 emissions exhibited interesting trends with vehicle displacement and emissions standards. These results have potential implications for policymakers in regard to vehicle emissions management and control strategies aimed at emissions reduction, fleet inspection, and maintenance programs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245344
Author(s):  
Jianye Zhou ◽  
Yuewen Jiang ◽  
Biqing Huang

Background Outbreaks of infectious diseases would cause great losses to the human society. Source identification in networks has drawn considerable interest in order to understand and control the infectious disease propagation processes. Unsatisfactory accuracy and high time complexity are major obstacles to practical applications under various real-world situations for existing source identification algorithms. Methods This study attempts to measure the possibility for nodes to become the infection source through label ranking. A unified Label Ranking framework for source identification with complete observation and snapshot is proposed. Firstly, a basic label ranking algorithm with complete observation of the network considering both infected and uninfected nodes is designed. Our inferred infection source node with the highest label ranking tends to have more infected nodes surrounding it, which makes it likely to be in the center of infection subgraph and far from the uninfected frontier. A two-stage algorithm for source identification via semi-supervised learning and label ranking is further proposed to address the source identification issue with snapshot. Results Extensive experiments are conducted on both synthetic and real-world network datasets. It turns out that the proposed label ranking algorithms are capable of identifying the propagation source under different situations fairly accurately with acceptable computational complexity without knowing the underlying model of infection propagation. Conclusions The effectiveness and efficiency of the label ranking algorithms proposed in this study make them be of practical value for infection source identification.


2020 ◽  
Author(s):  
Timothy F. Brady ◽  
Viola S. Störmer ◽  
Anna Shafer-Skelton ◽  
Jamal Rodgers Williams ◽  
Angus F. Chapman ◽  
...  

Both visual attention and visual working memory tend to be studied with very simple stimuli and low-level paradigms, designed to allow us to understand the representations and processes in detail, or with fully realistic stimuli that make such precise understanding difficult but are more representative of the real world. In this chapter we argue for an intermediate approach in which visual attention and visual working memory are studied by scaling up from the simplest settings to more complex settings that capture some aspects of the complexity of the real-world, while still remaining in the realm of well-controlled stimuli and well-understood tasks. We believe this approach, which we have been taking in our labs, will allow a more generalizable set of knowledge about visual attention and visual working memory while maintaining the rigor and control that is typical of vision science and psychophysics studies.


2020 ◽  
Vol 12 (2) ◽  
pp. 428-443 ◽  
Author(s):  
Kristin Bergtora Sandvik

Abstract Effective, safe and dignified dead body management (DBM) in the context of disasters, atrocities and wars has long been an important task—primarily for the humanitarian sector, but also for the human rights and international criminal justice community. How will the digitization of the human rights field and the adjacent spheres of humanitarian action and international criminal justice reshape ideas about death and the practices of care and control of the dead in the international space? To approach that question, the article coins the term ‘digital dead body management’ (DDBM) and offers an initial framing of this concept and some tentative pointers for a human rights research agenda. It focuses on the concept of ‘digital bodies’. Noting that the management of digital identities after death is becoming a significant governance challenge for the global technology sector, with thousands of ghost-accounts appearing every day, the article discusses the structural difference between how ‘digital deaths’ are dealt with in emergencies and in the marketplace, with a focus on DDBM as a problem of global equality. The article contributes to the critical conceptualization of DDBM by mapping a set of the tensions existing between the norms, objectives and operational approaches of humanitarian, human rights and international criminal justice practices and reflecting on where normative perils might arise in the context of digitization.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4175 ◽  
Author(s):  
Fabio Angeletti ◽  
Ioannis Chatzigiannakis ◽  
Andrea Vitaletti

In the era of the Internet of Things (IoT), drug developers can potentially access a wealth of real-world, participant-generated data that enable better insights and streamlined clinical trial processes. Protection of confidential data is of primary interest when it comes to health data, as medical condition influences daily, professional, and social life. Current approaches in digital trials entail that private user data are provisioned to the trial investigator that is considered a trusted party. The aim of this paper is to present the technical requirements and the research challenges to secure the flow and control of personal data and to protect the interests of all the involved parties during the first phases of a clinical trial, namely the characterization of the potential patients and their possible recruitment. The proposed architecture will let the individuals keep their data private during these phases while providing a useful sketch of their data to the investigator. Proof-of-concept implementations are evaluated in terms of performances achieved in real-world environments.


2020 ◽  
Vol 110 (4) ◽  
pp. 1206-1230 ◽  
Author(s):  
Abhijit V. Banerjee ◽  
Sylvain Chassang ◽  
Sergio Montero ◽  
Erik Snowberg

This paper studies the problem of experiment design by an ambiguity-averse decision-maker who trades off subjective expected performance against robust performance guarantees. This framework accounts for real-world experimenters’ preference for randomization. It also clarifies the circumstances in which randomization is optimal: when the available sample size is large and robustness is an important concern. We apply our model to shed light on the practice of rerandomization, used to improve balance across treatment and control groups. We show that rerandomization creates a trade-off between subjective performance and robust performance guarantees. However, robust performance guarantees diminish very slowly with the number of rerandomizations. This suggests that moderate levels of rerandomization usefully expand the set of acceptable compromises between subjective performance and robustness. Targeting a fixed quantile of balance is safer than targeting an absolute balance objective. (JEL C90, D81)


2003 ◽  
Vol 36 (12) ◽  
pp. 105-110
Author(s):  
Omar A.A. Orqueda ◽  
José Figueroa ◽  
Osvaldo E. Agamennoni

Sign in / Sign up

Export Citation Format

Share Document