scholarly journals Fermi surface instabilities in electronic Raman scattering of the metallic kagome lattice CsV3Sb5

Author(s):  
Dirk Wulferding ◽  
Seungyeol Lee ◽  
YoungSu Choi ◽  
Qiangwei Yin ◽  
Zhijun Tu ◽  
...  

Abstract Understanding the link between a charge density wave (CDW) instability and superconductivity is a central theme of the 2D metallic kagome compounds AV3Sb5 (A=K, Rb, and Cs). Using polarization-resolved electronic Raman spectroscopy, we shed light on Fermi surface fluctuations and electronic instabilities. We observe a quasielastic peak (QEP) whose spectral weight is progressively enhanced towards the superconducting transition. The QEP temperature-dependence reveals a steep increase in coherent in-plane charge correlations within the charge-density phase. In contrast, out-of-plane charge fluctuations remain strongly incoherent across the investigated temperature range. In-plane phonon anomalies appear at T* ≈ 50 K in addition to right below TCDW ≈ 95 K, while showing no apparent evidence of reduced symmetry at low temperatures. In conjunction with the consecutive phonon anomalies within the CDW state, our electronic Raman data unveil additional electronic instabilities that persist down to the superconducting phase, thereby offering a superconducting mechanism.

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Subir Mukhopadhyay ◽  
Nishal Rai

Abstract D2-D8 model admits a numerical solution that corresponds to a charge density wave and a spin density wave. Considering that as the background, we numerically solve the Dirac equation for probe fermions. From the solution, we obtain the Green’s function and study the behaviour of the spectral density. We begin with generic fermions and have studied the formation of the Fermi surface and where it develops a gap. In addition, we have incorporated an ionic lattice and study its effect on the Fermi surface. Then we analysed the worldvolume fermions. In this particular model we do not find Fermi surface for the dual operators.


2007 ◽  
Vol 21 (18n19) ◽  
pp. 3334-3339 ◽  
Author(s):  
T. TAMEGAI ◽  
G. J. LI

Anisotropic superconducting properties in Sc 5 Ir 4 Si 10 and Lu 5 Ir 4 Si 10 single crystals are investigated. Both of these compounds are found to show quasi-one-dimensional superconductivity with better conduction along the c-axis and anisotropy parameter of about 2. Reflecting the partial destruction of the Fermi surface due to charge-density-wave formation, Lu 5 Ir 4 Si 10 shows higher residual resistivity, lower superconducting transition temperature, and longer magnetic penetration depths compared with those of Sc 5 Ir 4 Si 10. Similarity of superconducting properties including the anisotropy in Sc 5 Ir 4 Si 10 and Lu 5 Ir 4 Si 10 indicates that the absence of the charge-density wave in Sc 5 Ir 4 Si 10 is controlled by a subtle difference in the Fermi surface topologies in these two compounds.


2018 ◽  
Vol 115 (27) ◽  
pp. 6986-6990 ◽  
Author(s):  
Shang Gao ◽  
Felix Flicker ◽  
Raman Sankar ◽  
He Zhao ◽  
Zheng Ren ◽  
...  

A charge density wave (CDW) is one of the fundamental instabilities of the Fermi surface occurring in a wide range of quantum materials. In dimensions higher than one, where Fermi surface nesting can play only a limited role, the selection of the particular wavevector and geometry of an emerging CDW should in principle be susceptible to controllable manipulation. In this work, we implement a simple method for straining materials compatible with low-temperature scanning tunneling microscopy/spectroscopy (STM/S), and use it to strain-engineer CDWs in 2H-NbSe2. Our STM/S measurements, combined with theory, reveal how small strain-induced changes in the electronic band structure and phonon dispersion lead to dramatic changes in the CDW ordering wavevector and geometry. Our work unveils the microscopic mechanism of a CDW formation in this system, and can serve as a general tool compatible with a range of spectroscopic techniques to engineer electronic states in any material where local strain or lattice symmetry breaking plays a role.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
M. Trigo ◽  
P. Giraldo-Gallo ◽  
J. N. Clark ◽  
M. E. Kozina ◽  
T. Henighan ◽  
...  

2021 ◽  
Author(s):  
Naotaka Yoshikawa ◽  
Hiroki Suganuma ◽  
Hideki Matsuoka ◽  
Yuki Tanaka ◽  
Pierre Hemme ◽  
...  

2021 ◽  
Vol 118 (22) ◽  
pp. 221603
Author(s):  
G. Storeck ◽  
K. Rossnagel ◽  
C. Ropers

2010 ◽  
Vol 81 (7) ◽  
Author(s):  
R. G. Moore ◽  
V. Brouet ◽  
R. He ◽  
D. H. Lu ◽  
N. Ru ◽  
...  

1982 ◽  
Vol 60 (5) ◽  
pp. 679-686 ◽  
Author(s):  
R. Fletcher

This paper provides a brief survey of the experimental and theoretical situation regarding the galvano- and thermomagnetic properties of potassium viewed within the context of the behaviour of other metals. Most of the data are consistent with various sample imperfections as being the major source of the anomalies that are found. However, the precise nature of the imperfections and the mechanism by which the imperfections produce the anomalies are not yet known. It is argued that the recently discovered detailed structure in the high field induced torque of K should be subjected to intensive experimental investigation before drawing any conclusions with regards to the possible presence of a charge density wave; the other magnetotransport properties offer little evidence either for or against such a possibility.


Sign in / Sign up

Export Citation Format

Share Document