scholarly journals Natural Compound Library Screening Identifies Sanguinarine Chloride For The Treatment of SCLC By Upregulating CDKN1A

Author(s):  
Mingtian Zhong ◽  
Fengyun Zhao ◽  
Yanni Huang ◽  
Xun Li ◽  
Yihao Long ◽  
...  

Abstract Background: Small cell lung cancer (SCLC) is notorious for aggressive malignancy without effective treatment, and most patients eventually develop tumor progression with a poor prognosis. There is an urgent need for discovering novel antitumor agents or therapeutic strategies for SCLC. Drug discovery from natural compounds has been proved to be an effective and innovative approach. Here, we performed a screening method with a natural compound library to identify the potential SCLC inhibitors. Methods: In this study, we performed a screening method based on CCK-8 assay to screen 640 natural compounds for SCLC. The effects of Sanguinarine chloride on SCLC cell proliferation, colony formation, cell cycle, apoptosis, migration and invasion were determined. RNA-seq and bioinformatics analysis was performed to investigate the anti-SCLC mechanism of Sanguinarine chloride. Publicly available datasets and samples were analyzed to investigate the expression level of CDKN1A and its clinical significance. Loss of functional cancer cell models were constructed by shRNA-mediated silencing. Quantitative RT-PCR and Western blot were used to measure gene and protein expression. Immunohistochemistry staining was performed to detect the expression of CDKN1A, Ki67, and Cleaved caspase 3 in xenograft tissues. Results: We identified Sanguinarine chloride as a potential inhibitor of SCLC, which inhibited cell proliferation, colony formation, cell cycle, cell migration and invasion, and promoted apoptosis of SCLC cells. Sanguinarine chloride played an important role in anti-SCLC by upregulating the expression of CDKN1A. Furthermore, Sanguinarine chloride in combination with panobinostat, or THZ1, or gemcitabine, or (+)-JQ-1 increased the anti-SCLC effect compared with either agent alone treatment. Conclusions: Our findings identified Sanguinarine chloride as a potential inhibitor of SCLC by upregulating the expression of CDKN1A. Sanguinarine chloride in combination with chemotherapy compounds exhibited strong synergism anti-SCLC properties, which could be further clinically explored for the treatment of SCLC.

2014 ◽  
Vol 99 (7) ◽  
pp. E1163-E1172 ◽  
Author(s):  
Wei Qiang ◽  
Yuan Zhao ◽  
Qi Yang ◽  
Wei Liu ◽  
Haixia Guan ◽  
...  

Context: ZIC1 has been reported to be overexpressed and plays an oncogenic role in some brain tumors, whereas it is inactivated by promoter hypermethylation and acts as a tumor suppressor in gastric and colorectal cancers. However, until now, its biological role in thyroid cancer remains totally unknown. Objectives: The aim of this study is to explore the biological functions and related molecular mechanism of ZIC1 in thyroid carcinogenesis. Setting and Design: Quantitative RT-PCR (qRT-PCR) was performed to evaluate mRNA expression of investigated genes. Methylation-specific PCR was used to analyze promoter methylation of the ZIC1 gene. The functions of ectopic ZIC1 expression in thyroid cancer cells were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell migration and invasion assays. Results: ZIC1 was frequently down-regulated by promoter hypermethylation in both primary thyroid cancer tissues and thyroid cancer cell lines. Moreover, our data showed that ZIC1 hypermethylation was significantly associated with lymph node metastasis in patients with papillary thyroid cancer. Notably, restoration of ZIC1 expression in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrest and apoptosis by blocking the activities of the phosphatidylinositol-3-kinase (PI3K)/Akt and RAS/RAF/MEK/ERK (MAPK) pathways, and enhancing FOXO3a transcriptional activity. Conclusions: Our data demonstrate that ZIC1 is frequently inactivated by promoter hypermethyaltion and functions as a tumor suppressor in thyroid cancer through modulating PI3K/Akt and MAPK signaling pathways and transcription factor FOXO3a.


Chemotherapy ◽  
2019 ◽  
Vol 64 (3) ◽  
pp. 146-154 ◽  
Author(s):  
Jinghu He ◽  
Junjie Xing ◽  
Xiaohong Yang ◽  
Chenxin Zhang ◽  
Yixiang Zhang ◽  
...  

Objective: Colorectal cancer (CRC) remains a major cause of cancer-related death worldwide. Proteasome 26S subunit ATPase 2 (PSMC2) plays vital roles in regulating cell cycle and transcription and has been confirmed to be a gene potentially associated with some human tumors. However, the expression correlation and molecular mechanism of PSMC2 in CRC are still unclear. This study aimed to investigate the role of PSMC2 in malignant behaviors in CRC. Methods: The high protein levels of PSMC2 in CRC samples were identified by tissue microarray analysis. Lentivirus was used to silence PSMC2 in HCT116 and RKO cells; MTT and colony formation assay were performed to determine cell proliferation. Wound healing and Transwell assay were used to detect cell migration and invasion. Flow cytometry assay was applied to detect cell cycle and apoptosis. Result: The results showed that, among the 96 CRC patients, the expression of PSMC2 was a positive correlation with the clinicopathological features of the patients with CRC. Furthermore, the low PSMC2 expression group showed a higher survival rate than the high PSMC2 expression group. The expression levels of PSMC2 in cancer tissue were dramatically upregulated compared with adjacent normal tissues. In vitro, shPSMC2 was designed to inhibit the expression of PSMC2 in CRC cells. Compared with shCtrl, silencing of PSMC2 significantly suppressed cell proliferation, decreased single cell colony formation, enhanced apoptosis, and accelerated G2 phase and/or S phase arrest. Conclusion: Survival analysis indicated that high expression of PSMC2 in the CRC samples was associated with poorer survival rate than low expression of PSMC2, while the anti-tumor effect of PSMC2 silencing was also confirmed at the cellular level in vitro. Our results suggested that PSMC2 potentially worked as a regulator for CRC, and the silencing of PSMC2 may be a therapeutic strategy for CRC.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jiang Liu ◽  
Chengtong Zhai ◽  
Degan Liu ◽  
Jianhua Liu

Objective. To investigate the expression of long noncoding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) in hepatocellular carcinoma tissues and its effect on cell proliferation, migration, and invasion. Methods. Quantitative real-time PCR was used to analyze the expression of LOXL1-AS1 RNA in tumor tissues, adjacent normal tissues, and cell lines. MTT assay, colony formation assay, flow cytometry analysis, transwell assays, and lentivirus-mediated RNA interference (RNAi) technology were used to evaluate cell proliferation and migration. Results. In the present study, we observed that the expression level of LOXL1-AS1 in hepatocellular carcinoma tissue was significantly higher than that in adjacent nontumor tissues, and its expression in three hepatic carcinoma cell lines was obviously higher than that in a normal cell line. In addition, in the Hep-G2 cell line, LOXL1-AS1 downregulation significantly inhibited cell proliferation in the light of the MTT and colony formation assays in vitro, which was consistent with animal experiment in vivo. What is more, cell migration was also inhibited in vitro in Matrigel Transwell Assay by LOXL1-AS1 knockdown, which might be partly attributed to the reduction of MMP-2 and MMP-9 protein expressions. Finally, cell cycle analysis revealed that knockdown of LOXL1-AS1 induced significantly a G0/G1 phase cell cycle arrest, which might be partly attributed to the downregulation of Cdc2, Cdc25A, and cyclin B1 protein expression. Conclusion. In conclusion, we demonstrated that reduced LOXL1-AS1 expression could inhibit hepatocellular carcinoma cell proliferation, migration, and invasion. The application of RNAi targeting LOXL1-AS1 might be a potential treatment strategy in advanced cases.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Mingjun Li ◽  
Qianqian Wang ◽  
Xiaofei Zhang ◽  
Ningning Yan ◽  
Xingya Li

Abstract Background Exosomes, emerging mediators of intercellular communication, are reported to transfer certain non-coding RNAs, such as microRNAs (miRNAs), which play a crucial role in cancer progression. The objective of this study was to determine the function of exosomal miR-126 and provide a novel mechanism of miR-126 action in NSCLC. Methods The morphology of exosomes was identified by transmission electron microscope (TEM), and the exosomal surface markers were quantified by western blot. The expression of miR-126 and integrin alpha-6 (ITGA6) mRNA was measured by quantitative real-time polymerase chain reaction (qRT-PCR), and ITGA6 protein expression was determined by western blot. For functional analyses, cell proliferation was assessed by colony formation assay and MTT assay. Cell cycle and cell apoptosis were monitored using flow cytometry assay. Cell migration and invasion were determined by transwell assay. ITGA6 was predicted as a target of miR-126 by bioinformatics analysis, which was verified by dual-luciferase reporter assay. The role of exosomal miR-126 in vivo was determined by Xenograft tumor models. Results NSCLC serum-derived exosomes harbored low expression of miR-126 and promoted NSCLC cell proliferation, cell cycle progression, cell migration and invasion. NSCLC serum-derived exosomes loaded with miR-126 mimic inhibits NSCLC cell proliferation, colony formation, migration and invasion but induced cell cycle arrest and apoptosis. Besides, exosomal miR-126 also blocked tumor growth in vivo. In mechanism, ITGA6 was a target of miR-126, and exosomal miR-126 weakened these NSCLC cell malignant behaviors and inhibited tumor growth by degrading the expression of ITGA6. Conclusion Exosomal miR-126 blocked the progression of NSCLC through the mediation of its target gene ITGA6, and exosomal miR-126 might be used as a promising biomarker for NSCLC therapy.


2021 ◽  
pp. 1-9
Author(s):  
Haiying Yang ◽  
Jie Liu ◽  
Xue Chen ◽  
Guobin Li

Angiopoietin-like 2 (Angptl2) is reported to be correlated with cardiovascular diseases, but its role in hypertension remains unclear. This study aimed to investigate the role and potential mechanism of Angptl2 in hypertension. Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) were used to detect the expression of Angptl2. Angiotensin II (Ang II) stimulates vascular smooth muscle cells (VSMCs) to mimic hypertension in vitro. Cell proliferation, migration, and invasion abilities were determined using CCK-8, cell colony formation, wound healing, and transwell assays, respectively. The cell cycle distribution was detected by flow cytometry. The expression of Ki67 was determined by immunofluorescence, and protein expression was measured using western blotting. Angptl2 was found to be elevated in hypertensive rats in vivo and in VSMCs upon Ang II stimulation in vitro. Angptl2 knockdown suppressed cell proliferation, colony formation, cell migration, and invasion as well as the downregulation of Ki67. Additionally, Angptl2 knockdown hindered cell cycle progression and downregulated protein expression of CDK2/4 and cyclin D1, but upregulated p21 expression. Furthermore, Angptl2 knockdown inhibited activation of the NLRP3 inflammasome. Our findings suggest that Angptl2 knockdown suppresses VSMC proliferation, migration, and invasion induced by Ang II. Angptl2 may be a new target for vascular remodeling in hypertension.


2018 ◽  
Vol 18 (7) ◽  
pp. 1025-1031
Author(s):  
Cheng Luo ◽  
Di Wu ◽  
Meiling Chen ◽  
Wenhua Miao ◽  
Changfeng Xue ◽  
...  

Background: Different saponins from herbs have been used as tonic or functional foods, and for treatment of various diseases including cancers. Although clinical data has supported the function of these saponins, their underlying molecular mechanisms have not been well defined. Methods: With the simulated hypoxia created by 8 hours of Cu++ exposure and following 24 hour incubation with different concentration of saponins in HepG2 cells for MTT assay, migration and invasion assays, and for RT-PCR, and with each group of cells for immunofluorescence observation by confocal microscopy. Results: ZC-4 had the highest rate of inhibition of cell proliferation by MTT assay, and the highest inhibition of migration rate by in vitro scratch assay, while ZC-3 had the highest inhibition of invasion ratio by transwell assay. Under the same simulated hypoxia, the molecular mechanism of saponin function was conducted by measuring the gene expression of Hypoxia Inducible Factor (HIF)-1α through RT-PCR, in which ZC-3 showed a potent inhibition of gene HIF-1α. For the protein expression by immunofluorescence staining with confocal microscopy, HIF-1α was also inhibited by saponins, with the most potent one being ZC-4 after eight hours’ relatively hypoxia incubation. Conclusion: Saponins ZC-4 and ZC-3 have the potential to reduce HepG2 cell proliferation, migration and invasion caused by hypoxia through effectively inhibiting the gene and protein expression of HIF-1α directly and as antioxidant indirectly


2021 ◽  
Author(s):  
Zhewen Zheng ◽  
Xue Zhang ◽  
Jian Bai ◽  
Long Long ◽  
Di Liu ◽  
...  

Abstract BackgroundPhosphoglucomutase 1(PGM1) is known for its involvement in cancer pathogenesis. However, its biological role in colorectal cancer (CRC) is unknown. Here, we studied the functions and mechanisms of PGM1 in CRC.Methods We verified PGM-1 as a DEG by a comprehensive strategy of the TCGA-COAD dataset mining and computational biology. Relative levels of PGM-1 in CRC tumors and adjoining peritumoral tissue were identified by qRT-PCR, WB, and IHC staining in a tissue microarray. PGM1 functions were analyzed using CCK8, EdU, colony formation, cell cycle, apoptosis, and Transwell migration and invasion assays. The influence of PGM1 was further investigated using tumor formation in vivo.ResultsPGM1 mRNA and protein were both reduced in CRC and the reduction was related to CRC pathology and overall survival. PGM1 knockdown stimulated both proliferation and colony formation, promoting cell cycle arrest and apoptosis while overexpression has opposite effects in CRC cells both in vivo and in vitro. Furthermore, we lined the actions of PGM1 to the PI3K/ AKT pathway. ConclusionWe verified that PGM1 suppresses CRC through the PI3K/ AKT pathway. These results suggest the potential for targeting PGM1 in CRC therapies.


2021 ◽  
Vol 11 (11) ◽  
pp. 2137-2145
Author(s):  
Xuejuan Zhu ◽  
Danqian Lu

Background: Sulfiredoxin (Srx) has been identified to play important roles in the development of various cancers. However, the precise effects and underlying mechanism of Srx on the progression of HCC are far from being fully understood. Materials and Methods: The abundances of Srx in THLE-2 cell and HCC cell lines were determined by western blot and RT-qPCR. Next, SK-Hep-1 cells were transfected with shRNA-Srx or shRNA-NC and treated with TBHQ (an extracellular signal-regulated kinase (ERK) activator) for functional experiments. Then, CCK8 and colony formation assays were used to determine cell proliferation and clone-forming abilities in vitro. Cell migration and invasion were assessed via wound healing and transwell assays. The expression of MMP2, MMP9 and key members in ERK/nuclear factor E2 related factor (Nrf2) signaling pathway was detected by performing western blot analysis. Results: We reported evidence that Srx was frequently up-regulated in HCC cell lines. Srx interference constrained cell proliferation, colony formation rate, migration and invasion of SK-Hep-1 cells. Moreover, mechanistic investigations indicated that Srx interference significantly inhibited the activation of ERK/Nrf2 signaling pathway, and ERK activator TBHQ can reverse the functions of Srx interference in SK-Hep-1 cells. Conclusion: Overall, Downregulation of Srx might impede HCC progression by suppressing ERK/Nrf2 signaling pathway. Findings in the current study reported the functional involvement and molecular mechanism of Srx in HCC, suggesting that Srx might have a potential therapeutic value in HCC treatment.


Sign in / Sign up

Export Citation Format

Share Document