scholarly journals Establishment of a 8 Immune-Related LncRNA Signature for Predicting the Prognosis of Soft Tissue Sarcoma

Author(s):  
Yuhang Liu ◽  
Changjiang Liu ◽  
Aixi Yu

Abstract Background: Soft tissue sarcoma is relatively rare and highly heterogeneous, which brings great difficulties to treatment. Long non-coding RNA acts a vital role in the occurrence and progression of soft tissue sarcoma, especially in the tumor-related immune process, which has become a hot spot of current research. Therefore, we are committed to developing lncRNA markers related to immunity to promote the treatment and prognosis of patients with soft tissue sarcoma.Methods:Based on the TCGA-SARC and GTEx data set, we screened out 8 prognostic-related immune lncRNAs and constructed a nomogram, which was verified in the test set. Furthermore, immune infiltration analysis was carried out on patients of high and low risk.Results: Based on the results of Pearson's correlation coefficient, we obtained 859 immune-related lncRNAs. After difference analysis, we finally determined 54 different lncRNAs. Univariate and multivariate cox regression analysis finally determined 8 immune-related lncRNAs to construct prognostic models and nomograms to predict the prognosis of STS patients. The above results have been verified in external data sets, indicating that this model has good predictive ability. Gene Set Enrichment Analysis and ESTIMATE analysis showed obviously differences exist in the immune infiltration status and immune cell subtypes of high- and low-risk patients.Conclusion: We constructed an immune-related lncRNA pattern to predict the survival status of soft tissue sarcoma patients.

Author(s):  
Wei Jiang ◽  
Jiameng Xu ◽  
Zirui Liao ◽  
Guangbin Li ◽  
Chengpeng Zhang ◽  
...  

ObjectiveTo screen lung adenocarcinoma (LUAC)-specific cell-cycle-related genes (CCRGs) and develop a prognostic signature for patients with LUAC.MethodsThe GSE68465, GSE42127, and GSE30219 data sets were downloaded from the GEO database. Single-sample gene set enrichment analysis was used to calculate the cell cycle enrichment of each sample in GSE68465 to identify CCRGs in LUAC. The differential CCRGs compared with LUAC data from The Cancer Genome Atlas were determined. The genetic data from GSE68465 were divided into an internal training group and a test group at a ratio of 1:1, and GSE42127 and GSE30219 were defined as external test groups. In addition, we combined LASSO (least absolute shrinkage and selection operator) and Cox regression analysis with the clinical information of the internal training group to construct a CCRG risk scoring model. Samples were divided into high- and low-risk groups according to the resulting risk values, and internal and external test sets were used to prove the validity of the signature. A nomogram evaluation model was used to predict prognosis. The CPTAC and HPA databases were chosen to verify the protein expression of CCRGs.ResultsWe identified 10 LUAC-specific CCRGs (PKMYT1, ETF1, ECT2, BUB1B, RECQL4, TFRC, COCH, TUBB2B, PITX1, and CDC6) and constructed a model using the internal training group. Based on this model, LUAC patients were divided into high- and low-risk groups for further validation. Time-dependent receiver operating characteristic and Cox regression analyses suggested that the signature could precisely predict the prognosis of LUAC patients. Results obtained with CPTAC, HPA, and IHC supported significant dysregulation of these CCRGs in LUAC tissues.ConclusionThis prognostic prediction signature based on CCRGs could help to evaluate the prognosis of LUAC patients. The 10 LUAC-specific CCRGs could be used as prognostic markers of LUAC.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5837
Author(s):  
Changwu Wu ◽  
Siming Gong ◽  
Georg Osterhoff ◽  
Nikolas Schopow

Soft tissue sarcomas (STS), a group of rare malignant tumours with high tissue heterogeneity, still lack effective clinical stratification and prognostic models. Therefore, we conducted this study to establish a reliable prognostic gene signature. Using 189 STS patients’ data from The Cancer Genome Atlas database, a four-gene signature including DHRS3, JRK, TARDBP and TTC3 was established. A risk score based on this gene signature was able to divide STS patients into a low-risk and a high-risk group. The latter had significantly worse overall survival (OS) and relapse free survival (RFS), and Cox regression analyses showed that the risk score is an independent prognostic factor. Nomograms containing the four-gene signature have also been established and have been verified through calibration curves. In addition, the predictive ability of this four-gene signature for STS metastasis free survival was verified in an independent cohort (309 STS patients from the Gene Expression Omnibus database). Finally, Gene Set Enrichment Analysis indicated that the four-gene signature may be related to some pathways associated with tumorigenesis, growth, and metastasis. In conclusion, our study establishes a novel four-gene signature and clinically feasible nomograms to predict the OS and RFS. This can help personalized treatment decisions, long-term patient management, and possible future development of targeted therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guomin Wu ◽  
Qihao Wang ◽  
Ting Zhu ◽  
Linhai Fu ◽  
Zhupeng Li ◽  
...  

This study aimed to establish a prognostic risk model for lung adenocarcinoma (LUAD). We firstly divided 535 LUAD samples in TCGA-LUAD into high-, medium-, and low-immune infiltration groups by consensus clustering analysis according to immunological competence assessment by single-sample gene set enrichment analysis (ssGSEA). Profile of long non-coding RNAs (lncRNAs) in normal samples and LUAD samples in TCGA was used for a differential expression analysis in the high- and low-immune infiltration groups. A total of 1,570 immune-related differential lncRNAs in LUAD were obtained by intersecting the above results. Afterward, univariate COX regression analysis and multivariate stepwise COX regression analysis were conducted to screen prognosis-related lncRNAs, and an eight-immune-related-lncRNA prognostic signature was finally acquired (AL365181.2, AC012213.4, DRAIC, MRGPRG-AS1, AP002478.1, AC092168.2, FAM30A, and LINC02412). Kaplan–Meier analysis and ROC analysis indicated that the eight-lncRNA-based model was accurate to predict the prognosis of LUAD patients. Simultaneously, univariate COX regression analysis and multivariate COX regression analysis were undertaken on clinical features and risk scores. It was illustrated that the risk score was a prognostic factor independent from clinical features. Moreover, immune data of LUAD in the TIMER database were analyzed. The eight-immune-related-lncRNA prognostic signature was related to the infiltration of B cells, CD4+ T cells, and dendritic cells. GSEA enrichment analysis revealed significant differences in high- and low-risk groups in pathways like pentose phosphate pathway, ubiquitin mediated proteolysis, and P53 signaling pathway. This study helps to treat LUAD patients and explore molecules related to LUAD immune infiltration to deeply understand the specific mechanism.


2021 ◽  
Author(s):  
Junliang Li ◽  
Lingfang Zhang ◽  
Tiankang Guo

Abstract Background. Peritoneal metastatic gastric cancer (PMGC) is very common, and usually, the prognosis is poor. There is currently an absence of accurate methods for the early diagnosis and prediction of peritoneal metastasis (PM). This highlights the need to develop strategies to identify the risk of PMGC. Methods. We performed a comprehensive discovery of biomarkers to predict PM by analyzing profiling datasets from GSE62254. The prognostic PM-related genes were obtained using the univariate Cox regression analysis, followed by a least absolute shrinkage and selection operator regression (LASSO) to establish a risk score model. The gene set enrichment analysis (GSEA) was used to determine the pathway enrichment in both the high- and low-risk groups. The 1-, 3-, and 5-year overall survival (OS) rates and area under the receiver operating characteristic curve (ROC) were used to compare the predictive accuracy-based risk stratification. In addition, an unsupervised clustering algorithm was applied to divide patients into subgroups according to the PM-related genes. Results. We identified 10 genes (MMP12, TAC1, TSPYL5, PPP1R14A, TMSB15B, NPY1R, PCDH9, EPM2AIP1, TIG7, and DYNC1I1) for PMGC diagnosis. The OS rates between the high- and low-risk groups at 1-, 3-, and 5-years were significantly different in the training and validation sets. The AUCs at 1-, 3-, and 5-years in the training set were 0.71, 0.74, and 0.73, respectively. In the validation set, the AUCs at 1-, 3-, and 5-years were 0.68, 0.66, and 0.69, respectively. The 10 gene signatures were correlated with immune cell infiltration in both the high- and low-risk groups. In addition, based on the GSEA, several significant pathways were enriched in the high-risk PMGC group, such as the Wnt and transforming growth factor beta (TGF-β) signaling pathway and leukocyte transendothelial migration pathway. Furthermore, unsupervised cluster analysis showed that the model could distinguish the level of risk among patients with PMGC. Conclusions. Overall, 10 gene signatures were identified for PMGC risk prediction. These may be valuable in making clinical decisions to improve treatment outcomes in patients with PMGC.


2021 ◽  
Author(s):  
Cankun Zhou ◽  
Chaomei Li ◽  
Yuhua Zheng ◽  
Xiaochun Liu

Abstract Background: Cervical cancer (CC) is one of the most common malignancies in gynecology. There is still a lack of specific biomarkers for the diagnosis and prognosis of CC. Pyroptosis is one of the methods of programmed cell death, and its various components are related to the occurrence, invasion, and metastasis of tumors. However, the role of pyroptosis in CC has not yet been elucidated.Methods: This study focuses on the development of a prognostic signature associated with pyroptosis for CC patients using integrated bioinformatics to elucidate the relationship between the signature and the tumor microenvironment and immune response.Results: We identified a prognostic signature based on eight pyroptosis-related genes (PRGs), with better prognostic survival in the low-risk group (P<0.05) and AUC values greater than 0.7. The results of the multi-factor Cox regression analysis indicated that the signature could be used as an independent prognostic factor, and both the DCA and the Nomogram suggested that the prognostic signature had good predictive power. Interestingly, this prognostic signature can also be applied to multiple tumors. In addition, the tumor microenvironment and immune infiltration status were significantly different between high and low-risk groups (P<0. 05). The core gene GZMB was screened and the CC-associated GZMB/ miR-378a/TRIM52-AS1 regulatory axis was constructed.Conclusion: The study successfully established the prognostic signature based on eight PRGs and reflected their tumor microenvironment and immune infiltration. The GZMB/ miR-378a/TRIM52-AS1 regulatory axis may play an important regulatory role in the development of CC, and further experimental studies are needed to validate these results subsequently.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoping Li ◽  
Jishang Chen ◽  
Qihe Yu ◽  
Hui Huang ◽  
Zhuangsheng Liu ◽  
...  

Background: A surge in newly diagnosed breast cancer has overwhelmed the public health system worldwide. Joint effort had beed made to discover the genetic mechanism of these disease globally. Accumulated research has revealed autophagy may act as a vital part in the pathogenesis of breast cancer.Objective: Aim to construct a prognostic model based on autophagy-related lncRNAs and investigate their potential mechanisms in breast cancer.Methods: The transcriptome data and clinical information of patients with breast cancer were obtained from The Cancer Genome Atlas (TCGA) database. Autophagy-related genes were obtained from the Human Autophagy Database (HADb). Long non-coding RNAs (lncRNAs) related to autophagy were acquired through the Pearson correlation analysis. Univariate Cox regression analysis as well as the least absolute shrinkage and selection operator (LASSO) regression analysis were used to identify autophagy-related lncRNAs with prognostic value. We constructed a risk scoring model to assess the prognostic significance of the autophagy-related lncRNAs signatures. The nomogram was then established based on the risk score and clinical indicators. Through the calibration curve, the concordance index (C-index) and receiver operating characteristic (ROC) curve analysis were evaluated to obtain the model's predictive performance. Subgroup analysis was performed to evaluate the differential ability of the model. Subsequently, gene set enrichment analysis was conducted to investigate the potential functions of these lncRNAs.Results: We attained 1,164 breast cancer samples from the TCGA database and 231 autophagy-related genes from the HAD database. Through correlation analysis, 179 autophagy-related lncRNAs were finally identified. Univariate Cox regression analysis and LASSO regression analysis further screened 18 prognosis-associated lncRNAs. The risk scoring model was constructed to divide patients into high-risk and low-risk groups. It was found that the low-risk group had better overall survival (OS) than those of the high-risk group. Then, the nomogram model including age, tumor stage, TNM stage and risk score was established. The evaluation index (C-index: 0.78, 3-year OS AUC: 0.813 and 5-year OS AUC: 0.785) showed that the nomogram had excellent predictive power. Subgroup analysis showed there were difference in OS between high-risk and low-risk patients in different subgroups (stage I-II, ER positive, Her-2 negative and non-TNBC subgroups; all P &lt; 0.05). According to the results of gene set enrichment analysis, these lncRNAs were involved in the regulation of multicellular organismal macromolecule metabolic process in multicellular organisms, nucleotide excision repair, oxidative phosphorylation, and TGF-β signaling pathway.Conclusions: We identified 18 autophagy-related lncRNAs with prognostic value in breast cancer, which may regulate tumor growth and progression in multiple ways.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kebing Huang ◽  
Xiaoyu Yue ◽  
Yinfei Zheng ◽  
Zhengwei Zhang ◽  
Meng Cheng ◽  
...  

Glioma is well known as the most aggressive and prevalent primary malignant tumor in the central nervous system. Molecular subtypes and prognosis biomarkers remain a promising research area of gliomas. Notably, the aberrant expression of mesenchymal (MES) subtype related long non-coding RNAs (lncRNAs) is significantly associated with the prognosis of glioma patients. In this study, MES-related genes were obtained from The Cancer Genome Atlas (TCGA) and the Ivy Glioblastoma Atlas Project (Ivy GAP) data sets of glioma, and MES-related lncRNAs were acquired by performing co-expression analysis of these genes. Next, Cox regression analysis was used to establish a prognostic model, that integrated ten MES-related lncRNAs. Glioma patients in TCGA were divided into high-risk and low-risk groups based on the median risk score; compared with the low-risk groups, patients in the high-risk group had shorter survival times. Additionally, we measured the specificity and sensitivity of our model with the ROC curve. Univariate and multivariate Cox analyses showed that the prognostic model was an independent prognostic factor for glioma. To verify the predictive power of these candidate lncRNAs, the corresponding RNA-seq data were downloaded from the Chinese Glioma Genome Atlas (CGGA), and similar results were obtained. Next, we performed the immune cell infiltration profile of patients between two risk groups, and gene set enrichment analysis (GSEA) was performed to detect functional annotation. Finally, the protective factors DGCR10 and HAR1B, and risk factor SNHG18 were selected for functional verification. Knockdown of DGCR10 and HAR1B promoted, whereas knockdown of SNHG18 inhibited the migration and invasion of gliomas. Collectively, we successfully constructed a prognostic model based on a ten MES-related lncRNAs signature, which provides a novel target for predicting the prognosis for glioma patients.


Author(s):  
Dongyan Zhao ◽  
Xizhen Sun ◽  
Sidan Long ◽  
Shukun Yao

AbstractAimLong non-coding RNAs (lncRNAs) have been identified to regulate cancers by controlling the process of autophagy and by mediating the post-transcriptional and transcriptional regulation of autophagy-related genes. This study aimed to investigate the potential prognostic role of autophagy-associated lncRNAs in colorectal cancer (CRC) patients.MethodsLncRNA expression profiles and the corresponding clinical information of CRC patients were collected from The Cancer Genome Atlas (TCGA) database. Based on the TCGA dataset, autophagy-related lncRNAs were identified by Pearson correlation test. Univariate Cox regression analysis and the least absolute shrinkage and selection operator analysis (LASSO) Cox regression model were performed to construct the prognostic gene signature. Gene set enrichment analysis (GSEA) was used to further clarify the underlying molecular mechanisms.ResultsWe obtained 210 autophagy-related genes from the whole dataset and found 1187 lncRNAs that were correlated with the autophagy-related genes. Using Univariate and LASSO Cox regression analyses, eight lncRNAs were screened to establish an eight-lncRNA signature, based on which patients were divided into the low-risk and high-risk group. Patients’ overall survival was found to be significantly worse in the high-risk group compared to that in the low-risk group (log-rank p = 2.731E-06). ROC analysis showed that this signature had better prognostic accuracy than TNM stage, as indicated by the area under the curve. Furthermore, GSEA demonstrated that this signature was involved in many cancer-related pathways, including TGF-β, p53, mTOR and WNT signaling pathway.ConclusionsOur study constructed a novel signature from eight autophagy-related lncRNAs to predict the overall survival of CRC, which could assistant clinicians in making individualized treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lunxu Li ◽  
Shilin Xia ◽  
Xueying Shi ◽  
Xu Chen ◽  
Dong Shang

AbstractHepatocellular carcinoma (HCC) is one of the main causes of cancer deaths globally. Immunotherapy is becoming increasingly important in the cure of advanced HCC. Thus it is essential to identify biomarkers for treatment response and prognosis prediction. We searched publicly available databases and retrieved 465 samples of genes from The Cancer Genome Atlas (TCGA) database and 115 tumor samples from Gene Expression Omnibus (GEO). Meanwhile, we used the ImmPort database to determine the immune-related genes as well. Weighted gene correlation network analysis, Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis were used to identify the key immune related genes (IRGs) which are closely related to prognosis. Gene set enrichment analysis (GSEA) was implemented to explore the difference of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway between Immune high- and low-risk score groups. Finally, we made a prognostic nomogram including Immune-Risk score and other clinicopathologic factors. A total of 318 genes from prognosis related modules were identified through weighted gene co-expression network analysis (WGCNA). 46 genes were strongly linked to prognosis after univariate Cox analysis. We constructed a seven genes prognostic signature which showed powerful prediction ability in both training cohort and testing cohort. 16 significant KEGG pathways were identified between high- and low- risk score groups using GSEA analysis. This study identified and verified seven immune-related prognostic biomarkers for the patients with HCC, which have potential value for immune modulatory and therapeutic targets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yudong Cao ◽  
Hecheng Zhu ◽  
Jun Tan ◽  
Wen Yin ◽  
Quanwei Zhou ◽  
...  

IntroductionGlioma is the most common primary cancer of the central nervous system with dismal prognosis. Long noncoding RNAs (lncRNAs) have been discovered to play key roles in tumorigenesis in various cancers, including glioma. Because of the relevance between immune infiltrating and clinical outcome of glioma, identifying immune-related lncRNAs is urgent for better personalized management.Materials and methodsSingle-sample gene set enrichment analysis (ssGSEA) was applied to estimate immune infiltration, and glioma samples were divided into high immune cell infiltration group and low immune cell infiltration group. After screening differentially expressed lncRNAs in two immune groups, least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to construct an immune-related prognostic signature. Additionally, we explored the correlation between immune infiltration and the prognostic signature.ResultsA total of 653 samples were appropriate for further analyses, and 10 lncRNAs were identified as immune-related lncRNAs in glioma. After univariate Cox regression and LASSO Cox regression analysis, six lncRNAs were identified to construct a prognostic signature for glioma, which could be taken as independent prognostic factors in both univariate and multivariate Cox regression analyses. Moreover, risk score was significantly correlated with all the 29 immune-related checkpoint expression (p &lt; 0.05) in ssGSEA except neutrophils (p = 0.43).ConclusionThe study constructed an immune-related prognostic signature for glioma, which contributed to improve clinical outcome prediction and guide immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document