scholarly journals Calcium-Phosphate Combination Enhances Spinosad Production in Saccharopolyspora Spinosa via Regulation of Fatty Acid Metabolism

Author(s):  
Miyang Wan ◽  
Cheng Peng ◽  
Wenxin Ding ◽  
Mengran Wang ◽  
Jinfeng Hu ◽  
...  

Abstract Phosphate concentration above 10 mM reduces the production of many secondary metabolites; however, the phenomenon is not mechanistically understood yet. Specifically, the problem of phosphorus limitation in antibiotic production remains unresolved. This study investigates the phosphorus inhibition effect on spinosad production and alleviates it by calcium and phosphate supplementation to fermentation media. Furthermore, we examined the mechanism of fatty acids induced increase in polyketides production. NaH2PO4 was found to be the most effective phosphate. Under the optimal phosphate condition, the maximal spinosad production reached 520 mg/L, showing a 1.65-fold increase over the control treatment. In the NaH2PO4-CaCO3 system, the de novo fatty acid biosynthesis was significantly downregulated while spinosad biosynthesis and β-oxidation were upregulated. The coordination of de novo fatty acid biosynthesis and β-oxidation promoted intracellular acetyl-CoA concentration. The results demonstrate that NaH2PO4-CaCO3 combined addition is a simple and effective strategy to alleviate phosphorus inhibition effect through the regulation of fatty acid metabolism and accumulation of immediate precursors. This information improves our understanding of phosphates' influence on the large-scale production of polyketides.

1991 ◽  
Vol 81 (2) ◽  
pp. 251-255
Author(s):  
Manfred Focke ◽  
Andrea Feld ◽  
Hartmut K. Lichtenthaler

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 706
Author(s):  
Antonio J. Moreno-Pérez ◽  
Raquel Martins-Noguerol ◽  
Cristina DeAndrés-Gil ◽  
Mónica Venegas-Calerón ◽  
Rosario Sánchez ◽  
...  

Histone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds. Two master transcriptional regulators identified in this analysis, VIV1 (homologous to Arabidopsis ABI3) and FUS3, cooperate in the regulation of WRINKLED 1, a transcriptional factor regulating glycolysis, and fatty acid synthesis in developing oilseeds.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11525
Author(s):  
Hong Li ◽  
Jun Tan ◽  
Yun Mu ◽  
Jianfeng Gao

Chlorella has become an important raw material for biodiesel production in recent years, and Chlorella sp. TLD6B, a species with high lipid concentrations and high salt and drought tolerance, has been cultivated on a large scale. To explore the lipid accumulation of Chlorella sp. TLD6B and its relationship to external NaCl concentrations, we performed physiological measurements and genome-wide gene expression profiling under different levels of salt stress. Chlorella sp. TLD6B was able to tolerate high levels of salt stress (0.8 M NaCl addition). Lipid concentrations initially increased and then decreased as salt stress increased and were highest under the addition of 0.2 M NaCl. Comparative transcriptomic analysis revealed that salt stress enhanced the expression of genes related to sugar metabolism and fatty acid biosynthesis (the ACCases BC and BCCP, KAS II, and GPDHs involved in TAG synthesis), thereby promoting lipid accumulation under the addition of 0.2 M NaCl. However, high salinity inhibited cell growth. Expression of three SADs, whose encoded products function in unsaturated fatty acid biosynthesis, was up-regulated under high salinity (0.8 M NaCl addition). This research clarifies the relationship between salt tolerance and lipid accumulation and promotes the utilization of Chlorella sp. TLD6B.


1992 ◽  
Vol 47 (5-6) ◽  
pp. 382-386 ◽  
Author(s):  
Bernd List ◽  
Andrea Golz ◽  
Wilhelm Boland ◽  
Hartmut K. Lichtenthaler

The antibiotic cerulenin was shown to be a potent dose-dependent inhibitor of de novo fattyacid biosynthesis in intact isolated chloroplasts of different plants (measured as [14C]acetate incorporation into the total fatty-acid fraction). Various chemical derivatives of cerulenin were synthesized and tested in the chloroplast assay-system of oat, spinach and pea. Modifications of the hydrocarbon chain of cerulenin (e.g. tetrahydro-cerulenin and its short-chain cis-2,3-epoxy-4-oxoheptanamide derivative) decreased the inhibitory activity of cerulenin, whereas variations of the epoxy-oxo-amide structural element led to a complete loss of inhibition potency. The results indicate that the naturally occurring antibiotic cerulenin is the most active specific inhibitor of de novo fatty-acid biosynthesis, but the formation of the hydroxylactam ring seems to be an essential requirement for the inhibitory activity. Those structural analogues of cerulenin, which can no longer form a hydroxylactam ring, do not possess any inhibitory capacity.


1963 ◽  
Vol 41 (1) ◽  
pp. 1267-1274
Author(s):  
Peter F. Hall ◽  
Edward E. Nishizawa ◽  
Kristen B. Eik-Nes

The fatty acids palmitic, palmitoleic, stearic, and oleic have been isolated from rabbit testis and evidence for the synthesis of palmitic and stearic acids de novo from acetate-1-C14is presented. ICSH did not produce demonstrable stimulation of the synthesis of these acids in vitro although the hormone stimulated the production of testosterone-C14by the same tissue. Adrenal tissue was shown to contain palmitic, stearic, and oleic acids, and ACTH did not increase the incorporation of acetate-1-C14into a fatty acid fraction extracted following incubation of adrenal tissue in the presence of this substrate. Fatty acid biosynthesis, therefore, is probably not influenced by the mechanisms by which tropic hormones increase steroid formation.


2020 ◽  
Vol 117 (14) ◽  
pp. 8044-8054 ◽  
Author(s):  
Michaela Huber ◽  
Kathrin S. Fröhlich ◽  
Jessica Radmer ◽  
Kai Papenfort

Hfq (host factor for phage Q beta) is key for posttranscriptional gene regulation in many bacteria. Hfq’s function is to stabilize sRNAs and to facilitate base-pairing withtrans-encoded target mRNAs. Loss of Hfq typically results in pleiotropic phenotypes, and, in the major human pathogenVibrio cholerae, Hfq inactivation has been linked to reduced virulence, failure to produce biofilms, and impaired intercellular communication. However, the RNA ligands of Hfq inV. choleraeare currently unknown. Here, we used RIP-seq (RNA immunoprecipitation followed by high-throughput sequencing) analysis to identify Hfq-bound RNAs inV. cholerae. Our work revealed 603 coding and 85 noncoding transcripts associated with Hfq, including 44 sRNAs originating from the 3′ end of mRNAs. Detailed investigation of one of these latter transcripts, named FarS (fatty acid regulated sRNA), showed that this sRNA is produced by RNase E-mediated maturation of thefabB3′UTR, and, together with Hfq, inhibits the expression of two paralogousfadEmRNAs. ThefabBandfadEgenes are antagonistically regulated by the major fatty acid transcription factor, FadR, and we show that, together, FadR, FarS, and FadE constitute a mixed feed-forward loop regulating the transition between fatty acid biosynthesis and degradation inV. cholerae. Our results provide the molecular basis for studies on Hfq inV. choleraeand highlight the importance of a previously unrecognized sRNA for fatty acid metabolism in this major human pathogen.


1990 ◽  
Vol 45 (5) ◽  
pp. 518-520 ◽  
Author(s):  
Manfred Focke ◽  
Andrea Feld ◽  
Hartmut K. Lichtenthaler

Thiolactomycin was shown to be a potent inhibitor of de novo fatty acid biosynthesis in intact isolated chloroplasts (measured as [14C]acetate incorporation into total fatty acids). In our attempt to further localize the inhibition site we confirmed the inhibition with a fatty acid synthetase preparation, measuring the incorporation of [14C]malonyl-CoA into total fatty acids. From the two proposed enzymic targets of the fatty acid synthetase by thiolactomycin we could exclude the acetyl-CoA: ACP transacetylase. It appears that the inhibition by thiolactomycin occurs on the level of the condensing enzymes, i.e. the 3-oxoacyl-ACP synthases. We also demonstrated that the two starting enzymes of de novo fatty acid biosynthesis, the acetyl-CoA synthetase and the acetyl-CoA carboxylase, are not affected by thiolactomycin.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Regiane Kawasaki ◽  
Rafael A. Baraúna ◽  
Artur Silva ◽  
Marta S. P. Carepo ◽  
Rui Oliveira ◽  
...  

Exiguobacterium antarcticumB7 is extremophile Gram-positive bacteria able to survive in cold environments. A key factor to understanding cold adaptation processes is related to the modification of fatty acids composing the cell membranes of psychrotrophic bacteria. In our study we show thein silicoreconstruction of the fatty acid biosynthesis pathway ofE. antarcticumB7. To build the stoichiometric model, a semiautomatic procedure was applied, which integrates genome information using KEGG and RAST/SEED. Constraint-based methods, namely, Flux Balance Analysis (FBA) and elementary modes (EM), were applied. FBA was implemented in the sense of hexadecenoic acid production maximization. To evaluate the influence of the gene expression in the fluxome analysis, FBA was also calculated using thelog2⁡FCvalues obtained in the transcriptome analysis at 0°C and 37°C. The fatty acid biosynthesis pathway showed a total of 13 elementary flux modes, four of which showed routes for the production of hexadecenoic acid. The reconstructed pathway demonstrated the capacity ofE. antarcticumB7 tode novoproduce fatty acid molecules. Under the influence of the transcriptome, the fluxome was altered, promoting the production of short-chain fatty acids. The calculated models contribute to better understanding of the bacterial adaptation at cold environments.


Sign in / Sign up

Export Citation Format

Share Document