scholarly journals Transcriptome Analysis of gene in Mouse M-1 cells revealing the functional mechanism of Astragali radix extract

Author(s):  
Bing Wang ◽  
Qian Feng ◽  
chao zhang ◽  
Yuming Chen ◽  
Yu Chen ◽  
...  

Abstract Background Astragali Radix (AR),the dried root of legumes, belongs to the Qi- invigorating herbs in traditional Chinese medicine and plays an important role in the treatment of many diseases. In order to understand the mechanism of action of AR extract, we used AR extract to treat M-1, mouse kidney cells, and used transcriptome sequencing technology to detect the genomic transcription level of the cells under the action of AR at different concentrations and times. Result The results showed that after a low concentration of AR treatments on the cells, the expression of genes related to cell growth and cellular immune response changed significantly, among which multiple genes are related to mitochondrial function, while high concentrations of AR affected the expression of histones and disease-related genes. It showed that the low concentration of AR extract can achieve the effect of invigorating Qi by regulating the function of mitochondria. In addition, several important genes and pathways were identified as potential targets of AR activation. Conclusion The research not only clarified the main molecular biological mechanism of AR invigorating Qi, but also provided experimental basis and cellular physiology reference for the further clinical application of AR.

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1131 ◽  
Author(s):  
Federico Di Marco ◽  
Francesco Trevisani ◽  
Pamela Vignolini ◽  
Silvia Urciuoli ◽  
Andrea Salonia ◽  
...  

Pasta is one of the basic foods of the Mediterranean diet and for this reason it was chosen for this study to evaluate its antioxidant properties. Three types of pasta were selected: buckwheat, rye and egg pasta. Qualitative–quantitative characterization analyses were carried out by HPLC-DAD to identify antioxidant compounds. The data showed the presence of carotenoids such as lutein and polyphenols such as indoleacetic acid, (carotenoids from 0.08 to 0.16 mg/100 g, polyphenols from 3.7 to 7.4 mg/100 g). To assess the effect of the detected metabolites, in vitro experimentation was carried out on kidney cells models: HEK-293 and MDCK. Standards of β-carotene, indoleacetic acid and caffeic acid, hydroalcoholic and carotenoid-enriched extracts from samples of pasta were tested in presence of antioxidant agent to determine viability variations. β-carotene and indoleacetic acid standards exerted a protective effect on HEK-293 cells while no effect was detected on MDCK. The concentrations tested are likely in the range of those reached in body after the consumption of a standard pasta meal. Carotenoid-enriched extracts and hydroalcoholic extracts showed different effects, observing rescues for rye pasta hydroalcoholic extract and buckwheat pasta carotenoid-enriched extract, while egg pasta showed milder dose depending effects assuming pro-oxidant behavior at high concentrations. The preliminary results suggest behaviors to be traced back to the whole phytocomplexes respect to single molecules and need further investigations.


2015 ◽  
Vol 308 (3) ◽  
pp. L270-L286 ◽  
Author(s):  
Behzad Yeganeh ◽  
Saeid Ghavami ◽  
Andrea L. Kroeker ◽  
Thomas H. Mahood ◽  
Gerald L. Stelmack ◽  
...  

Subcellular trafficking within host cells plays a critical role in viral life cycles, including influenza A virus (IAV). Thus targeting relevant subcellular compartments holds promise for effective intervention to control the impact of influenza infection. Bafilomycin A1(Baf-A1), when used at relative high concentrations (≥10 nM), inhibits vacuolar ATPase (V-ATPase) and reduces endosome acidification and lysosome number, thus inhibiting IAV replication but promoting host cell cytotoxicity. We tested the hypothesis that much lower doses of Baf-A1also have anti-IAV activity, but without toxic effects. Thus we assessed the antiviral activity of Baf-A1at different concentrations (0.1–100 nM) in human alveolar epithelial cells (A549) infected with IAV strain A/PR/8/34 virus (H1N1). Infected and mock-infected cells pre- and cotreated with Baf-A1were harvested 0–24 h postinfection and analyzed by immunoblotting, immunofluorescence, and confocal and electron microscopy. We found that Baf-A1had disparate concentration-dependent effects on subcellular organelles and suppressed affected IAV replication. At concentrations ≥10 nM Baf-A1inhibited acid lysosome formation, which resulted in greatly reduced IAV replication and release. Notably, at a very low concentration of 0.1 nM that is insufficient to reduce lysosome number, Baf-A1retained the capacity to significantly impair IAV nuclear accumulation as well as IAV replication and release. In contrast to the effects of high concentrations of Baf-A1, very low concentrations did not exhibit cytotoxic effects or induce apoptotic cell death, based on morphological and FACS analyses. In conclusion, our results reveal that low-concentration Baf-A1is an effective inhibitor of IAV replication, without impacting host cell viability.


2000 ◽  
Vol 182 (23) ◽  
pp. 6815-6818 ◽  
Author(s):  
Thomas Petit ◽  
Jasper A. Diderich ◽  
Arthur L. Kruckeberg ◽  
Carlos Gancedo ◽  
Karel Van Dam

ABSTRACT Glucose transport kinetics and mRNA levels of different glucose transporters were determined in Saccharomyces cerevisiaestrains expressing different sugar kinases. During exponential growth on glucose, a hxk2 null strain exhibited high-affinity hexose transport associated with an elevated transcription of the genesHXT2 and HXT7, encoding high-affinity transporters, and a diminished expression of the HXT1 andHXT3 genes, encoding low-affinity transporters. Deletion ofHXT7 revealed that the high-affinity component is mostly due to HXT7; however, a previously unidentified very-high-affinity component (Km = 0.19 mM) appeared to be due to other factors. Expression of genes encoding hexokinases from Schizosaccharomyces pombe orYarrowia lipolytica in a hxk1 hxk2 glk1 strain prevented derepression of the high-affinity transport system at high concentrations of glucose.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yeo-Kwang Yoon ◽  
Hong-Jung Woo ◽  
Youngchul Kim

Orostachys japonicusis traditionally used as an inflammatory agent. In this report, we investigated the effects ofO. japonicusextract on the expression of genes encoding pathogen-recognition receptors (TLR2, TLR4, NOD1, and NOD2) and proinflammatory factors (iNOS, COX-2, and cytokines) in LPS-stimulated PMA-differentiated THP-1 cells and the NF-κB and MAPK pathways.O. japonicusinduced toxicity at high concentrations but had no effect at concentrations lower than 25 μg/mL.O. japonicusinhibited LPS-induced TLR4 and NOD2 mRNA levels, suppressed LPS-induced iNOS and COX-2 transcription and translocation, and downregulated LPS-induced proinflammatory cytokine (IL-1β, IL-6, IL-8, and TNF-α) mRNA levels. In addition,O. japonicusinhibited LPS-induced NF-κB activation and IκBαdegradation and suppressed LPS-induced JNK, p38 MAPK, and ERK phosphorylation. Overall, our results demonstrate that the anti-inflammatory effects ofO. japonicusare mediated by suppression of NF-κB and MAPK signaling, resulting in reduced TLR4, NOD2, iNOS, and COX-2 expression and inhibition of inflammatory cytokine expression.


2008 ◽  
Vol 414 (3) ◽  
pp. 441-452 ◽  
Author(s):  
Huihui Kong ◽  
Peter P. Jones ◽  
Andrea Koop ◽  
Lin Zhang ◽  
Henry J. Duff ◽  
...  

Caffeine has long been used as a pharmacological probe for studying RyR (ryanodine receptor)-mediated Ca2+ release and cardiac arrhythmias. However, the precise mechanism by which caffeine activates RyRs is elusive. In the present study, we investigated the effects of caffeine on spontaneous Ca2+ release and on the response of single RyR2 (cardiac RyR) channels to luminal or cytosolic Ca2+. We found that HEK-293 cells (human embryonic kidney cells) expressing RyR2 displayed partial or ‘quantal’ Ca2+ release in response to repetitive additions of submaximal concentrations of caffeine. This quantal Ca2+ release was abolished by ryanodine. Monitoring of endoplasmic reticulum luminal Ca2+ revealed that caffeine reduced the luminal Ca2+ threshold at which spontaneous Ca2+ release occurs. Interestingly, spontaneous Ca2+ release in the form of Ca2+ oscillations persisted in the presence of 10 mM caffeine, and was diminished by ryanodine, demonstrating that unlike ryanodine, caffeine, even at high concentrations, does not hold the channel open. At the single-channel level, caffeine markedly reduced the threshold for luminal Ca2+ activation, but had little effect on the threshold for cytosolic Ca2+ activation, indicating that the major action of caffeine is to reduce the luminal, but not the cytosolic, Ca2+ activation threshold. Furthermore, as with caffeine, the clinically relevant, pro-arrhythmic methylxanthines aminophylline and theophylline potentiated luminal Ca2+ activation of RyR2, and increased the propensity for spontaneous Ca2+ release, mimicking the effects of disease-linked RyR2 mutations. Collectively, our results demonstrate that caffeine triggers Ca2+ release by reducing the threshold for luminal Ca2+ activation of RyR2, and suggest that disease-linked RyR2 mutations and RyR2-interacting pro-arrhythmic agents may share the same arrhythmogenic mechanism.


2017 ◽  
Vol 3 (4) ◽  
pp. 00025-2017 ◽  
Author(s):  
Alice C-H. Chen ◽  
Yang Xi ◽  
Melanie Carroll ◽  
Helen L. Petsky ◽  
Samantha J. Gardiner ◽  
...  

Protracted bacterial bronchitis (PBB) in young children is a common cause of prolonged wet cough and may be a precursor to bronchiectasis in some children. Although PBB and bronchiectasis are both characterised by neutrophilic airway inflammation and a prominent interleukin (IL)-1β signature, the contribution of the IL-1β pathway to host defence is not clear.This study aimed to compare systemic immune responses against common pathogens in children with PBB, bronchiectasis and control children and to determine the importance of the IL-1β pathway.Non-typeable Haemophilus influenzae (NTHi) stimulation of peripheral blood mononuclear cells (PBMCs) from control subjects (n=20), those with recurrent PBB (n=20) and bronchiectasis (n=20) induced high concentrations of IL-1β, IL-6, interferon (IFN)-γ and IL-10. Blocking with an IL-1 receptor antagonist (IL-1Ra) modified the cellular response to pathogens, inhibiting cytokine synthesis by NTHi-stimulated PBMCs and rhinovirus-stimulated PBMCs (in a separate PBB cohort). Inhibition of IFN-γ production by IL-1Ra was observed across multiple cell types, including CD3+ T cells and CD56+ NK cells.Our findings highlight the extent to which IL-1β regulates the cellular immune response against two common respiratory pathogens. While blocking the IL-1β pathway has the potential to reduce inflammation, this may come at the cost of protective immunity against NTHi and rhinovirus.


1999 ◽  
Vol 65 (11) ◽  
pp. 5177-5181 ◽  
Author(s):  
Hiroshi Fukushima ◽  
Ken Hoshina ◽  
Manabu Gomyoda

ABSTRACT Cattle are an important reservoir of Shiga toxin-producingEscherichia coli (STEC) O26, O111, and O157. The fate of these pathogens in bovine feces at 5, 15, and 25°C was examined. The feces of a cow naturally infected with STEC O26:H11 and two STEC-free cows were studied. STEC O26, O111, and O157 were inoculated into bovine feces at 101, 103, and 105 CFU/g. All three pathogens survived at 5 and 25°C for 1 to 4 weeks and at 15°C for 1 to 8 weeks when inoculated at the low concentration. On samples inoculated with the middle and high concentrations, O26, O111, and O157 survived at 25°C for 3 to 12 weeks, at 15°C for 1 to 18 weeks, and at 5°C for 2 to 14 weeks, respectively. Therefore, these pathogens can survive in feces for a long time, especially at 15°C. The surprising long-term survival of STEC O26, O111, and O157 in bovine feces shows that such feces are a potential vehicle for transmitting not only O157 but also O26 and O111 to cattle, food, and the environment. Appropriate handling of bovine feces is emphasized.


1963 ◽  
Vol 09 (02) ◽  
pp. 368-386 ◽  
Author(s):  
Birger Blombäck ◽  
Margareta Blombäck ◽  
Per Olsson

SummaryThe antithrombin activity of plasma, serum and plasma fractions has been studied under different experimental conditions. Two different methods have been used for the assay of antithrombin activity.Under the experimental conditions described the following antithrombin activities have been found to be of importance in the inactivation of thrombin:1. Progressive inactivation in the absence of heparin can take place in plasma and to a less extent in defibrinated plasma and serum.2. Inactivation of thrombin in presence of fibrinogen and heparin in low concentration (about 0.03 I.U./ml). This effect was abolished at high heparin levels.3. Inactivation of thrombin by plasma, defibrinated plasma and serum at high concentrations of heparin (about 2—15 I.U./ml). This activity is tentatively named the heparin co-factor.


Toxics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 64 ◽  
Author(s):  
Faizan Rashid ◽  
Saeed Ahmad ◽  
Joseph Maria Kumar Irudayaraj

Perfluorooctanoic acid (PFOA) has been implicated in various toxicities including neurotoxicity, genotoxicity, nephrotoxicity, epigenetic toxicity, immunotoxicity, reproductive toxicity, and hepatotoxicity. However, information on the accumulation of PFOA in the intestine and its toxic effects on intestinal epigenetics and tight junction (TJ) genes is sparse. CD1 mice were dosed with PFOA (1, 5, 10, or 20 mg/kg/day) for 10 days, and its accumulation and induced alterations in the expression of epigenetic and tight junction genes in the small intestine and colon were evaluated using LC–MS and qPCR techniques. PFOA reduced the expression levels of DNA methyltransferases (Dnmt1, Dnmt3a, Dnmt3b) primarily in the small intestine whereas, in the colon, a decrease was observed only at high concentrations. Moreover, ten-eleven translocation genes (Tet2 and Tet3) expression was dysregulated in the small intestine, whereas in the colon Tets remained unaffected. The tight junction genes Claudins (Cldn), Occludin (Ocln), and Tight Junction Protein (Tjp) were also heavily altered in the small intestine. TJs responded differently across the gut, in proportion to PFOA dosing. Our study reveals that PFOA triggers DNA methylation changes and alters the expression of genes essential for maintaining the physical barrier of intestine, with more profound effects in the small intestine compared to the colon.


2013 ◽  
Vol 825 ◽  
pp. 157-161 ◽  
Author(s):  
Camila N. Salazar ◽  
Mauricio Acosta ◽  
Pedro A. Galleguillos ◽  
Amir Shmaryahu ◽  
Raquel Quatrini ◽  
...  

Acidithiobacillus ferrooxidans strain D2 was isolated from a copper bioleaching operation in Atacama Desert, Chile. Copper is widely used as cofactor in proteins but high concentrations of copper are toxic. Cells require certain mechanisms to maintain the copper homeostasis and avoid toxic effects of high intracellular concentration. The molecular response of A. ferrooxidans strain D2 grown in the presence/absence of copper was examined using a A. ferrooxidans whole-genome DNA microarrays. Roughly 23% of 3,147 genes represented on the microarray were differentially expressed; about 9% of them were upregulated in the presence of copper. Among the upregulated genes, those encoding for the copper efflux protein (CusA) and for the copper-translocating P-type ATPase (CopA) were upregulated. The expression of genes encoding proteins related to iron transport was repressed. Similarly, genes related with assimilative metabolism of sulfur (L-cysteine biosynthesis) cysB, cysJ, cysI, CysD-2 and cysN were upregulated. Our results show that when A. ferrooxidans strain D2 was challenged with high copper concentrations, genes related to copper stress response were upregulated as well as others that have not been reported to be related to that mechanism. In addition, some genes related to other metabolic pathways were repressed, probably because of the energy cost of the stress response.


Sign in / Sign up

Export Citation Format

Share Document