scholarly journals Programmable Wavelength Filter with Double Ring Loaded MZI

Author(s):  
Mi Wang ◽  
Xiangfeng Chen ◽  
Umar Khan ◽  
Wim Bogaerts

Abstract We propose a novel filter circuit that incorporates a double ring resonator with a balanced Mach-Zehnder interferometer (MZI).The circuit has a response equivalent to a conventional ring loaded MZI filter, but with added flexibility in terms of configurability. The second-order filter can also be cascaded to realize higher-order filters. The circuit incorporates a two-stage input and output coupler to further reduce the effect of dispersion. A combination of local and global optimization strategies to program the filter, using tailored objective functions, have been tested in simulation and experiments. To our best knowledge, this is the first time a global optimization strategy is directly used in ARMA filter synthesis and simulation without any additional requirement. We further extend the optimization strategy into experiments and demonstrated its use in practical case for programmable filter circuits.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. P. Vasco ◽  
V. Savona

AbstractWe optimize a silica-encapsulated silicon L3 photonic crystal cavity for ultra-high quality factor by means of a global optimization strategy, where the closest holes surrounding the cavity are varied to minimize out-of-plane losses. We find an optimal value of $$Q_c=4.33\times 10^7$$ Q c = 4.33 × 10 7 , which is predicted to be in the 2 million regime in presence of structural imperfections compatible with state-of-the-art silicon fabrication tolerances.


2009 ◽  
Vol 45 (7) ◽  
pp. 892-899 ◽  
Author(s):  
Toru Segawa ◽  
Shinji Matsuo ◽  
Takaaki Kakitsuka ◽  
Tomonari Sato ◽  
Yasuhiro Kondo ◽  
...  

2018 ◽  
Vol 26 (4) ◽  
pp. 569-596 ◽  
Author(s):  
Yuping Wang ◽  
Haiyan Liu ◽  
Fei Wei ◽  
Tingting Zong ◽  
Xiaodong Li

For a large-scale global optimization (LSGO) problem, divide-and-conquer is usually considered an effective strategy to decompose the problem into smaller subproblems, each of which can then be solved individually. Among these decomposition methods, variable grouping is shown to be promising in recent years. Existing variable grouping methods usually assume the problem to be black-box (i.e., assuming that an analytical model of the objective function is unknown), and they attempt to learn appropriate variable grouping that would allow for a better decomposition of the problem. In such cases, these variable grouping methods do not make a direct use of the formula of the objective function. However, it can be argued that many real-world problems are white-box problems, that is, the formulas of objective functions are often known a priori. These formulas of the objective functions provide rich information which can then be used to design an effective variable group method. In this article, a formula-based grouping strategy (FBG) for white-box problems is first proposed. It groups variables directly via the formula of an objective function which usually consists of a finite number of operations (i.e., four arithmetic operations “[Formula: see text]”, “[Formula: see text]”, “[Formula: see text]”, “[Formula: see text]” and composite operations of basic elementary functions). In FBG, the operations are classified into two classes: one resulting in nonseparable variables, and the other resulting in separable variables. In FBG, variables can be automatically grouped into a suitable number of non-interacting subcomponents, with variables in each subcomponent being interdependent. FBG can easily be applied to any white-box problem and can be integrated into a cooperative coevolution framework. Based on FBG, a novel cooperative coevolution algorithm with formula-based variable grouping (so-called CCF) is proposed in this article for decomposing a large-scale white-box problem into several smaller subproblems and optimizing them respectively. To further enhance the efficiency of CCF, a new local search scheme is designed to improve the solution quality. To verify the efficiency of CCF, experiments are conducted on the standard LSGO benchmark suites of CEC'2008, CEC'2010, CEC'2013, and a real-world problem. Our results suggest that the performance of CCF is very competitive when compared with those of the state-of-the-art LSGO algorithms.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Haryana Mohd Hairi

<p>Photonic ring waveguide resonators have great potential applications in wavelength filtering, switching, modulation and multiplexing.  The response of coupled ring resonators can be designed by using various coupling configurations. Particularly, ring resonators can be used as wavelength filter when the wavelength fits a whole multiple times in the circumference of the ring.  In this paper, we investigate the effect of input amplitude to power amplification in four ring resonator configurations and vary the input amplitude on five different wavelengths.  With OptiFDTD Photonics Simulation Software V8.0, the results show the intensity phenomenon of filtering in optical circuit.</p><p> </p>


2013 ◽  
Vol 55 (2) ◽  
pp. 109-128 ◽  
Author(s):  
B. L. ROBERTSON ◽  
C. J. PRICE ◽  
M. REALE

AbstractA stochastic algorithm for bound-constrained global optimization is described. The method can be applied to objective functions that are nonsmooth or even discontinuous. The algorithm forms a partition on the search region using classification and regression trees (CART), which defines a region where the objective function is relatively low. Further points are drawn directly from the low region before a new partition is formed. Alternating between partition and sampling phases provides an effective method for nonsmooth global optimization. The sequence of iterates generated by the algorithm is shown to converge to an essential global minimizer with probability one under mild conditions. Nonprobabilistic results are also given when random sampling is replaced with points taken from the Halton sequence. Numerical results are presented for both smooth and nonsmooth problems and show that the method is effective and competitive in practice.


2013 ◽  
Vol 40 (2) ◽  
pp. 0205006
Author(s):  
刘毅 Liu Yi ◽  
仝晓刚 Tong Xiaogang ◽  
于晋龙 Yu Jinlong ◽  
薛晨阳 Xue Chenyang ◽  
王文睿 Wang Wenrui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document