scholarly journals TNFα-Mediated Necroptosis in BBB Endothelia as a Potential Mechanism of Increased Seizure Susceptibility in Mice Following Systemic Inflammation

Author(s):  
Wan-Yu Huang ◽  
Yen-Ling Lai ◽  
Ko-Hung Liu ◽  
Shankung Lin ◽  
Hsuan-Ying Chen ◽  
...  

Abstract BackgroundSystemic inflammation is a potent contributor to increased seizure susceptibility. However, less is known about the effects of systemic inflammation on blood-brain barrier (BBB) that affect neuron excitability. Necroptosis and inflammation are intimately associated in various neurological diseases. We hypothesized that necroptosis is involved in the mechanism underlying sepsis-associated neuronal excitability in BBB components.MethodsSystemic inflammation was induced by LPS. Seizure susceptibility of mice was measured by kainic acid intraperitoneal injection. Pharmacological inhibitors (C87 and GSK872) were used to block signaling of TNFα receptors and necroptosis. To identify the features of sepsis-associated response in the BBB and CNS, brain tissues of mice were obtained for assays of the necroptosis-related protein expression, and immunofluorescence staining for morphological changes of endothelia and glia. Microdialysis assay was also used to evaluate the changes of extracellular potassium and glutamate levels in brain.ResultsSignificant findings including induced increased seizure susceptibility and BBB endothelia necroptosis and leakage, Kir4.1 dysfunction, and microglia activation were observed in mice following LPS injection. Inhibition of TNFa receptor inhibitor C87 significantly attenuated increased kainic acid-induced seizure susceptibility and endothelia necroptosis and microglia activation, and restored kir4.1 protein expression, compared with those in controls. GSK872 (a RIP3 inhibitor) treatment, like C87, had consistent effects on these changes following LPS.ConclusionsOur results showed that TNFα-mediated necroptosis in BBB endothelia damage contributes to the development of increased seizure susceptibility in mice after systemic inflammation. Pharmacologic inhibition targeting this necroptosis pathway may provide a promising therapeutic approach to reduce sepsis-associated BBB dysfunction, astrocyte ion channel dysfunction, and subsequent neuronal excitability.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jingliang Zhang ◽  
Chenyu Zhang ◽  
Xiaoling Chen ◽  
Bingwei Wang ◽  
Weining Ma ◽  
...  

AbstractTemporal lobe epilepsy (TLE) is one of the most common and intractable neurological disorders in adults. Dysfunctional PKA signaling is causally linked to the TLE. However, the mechanism underlying PKA involves in epileptogenesis is still poorly understood. In the present study, we found the autophosphorylation level at serine 114 site (serine 112 site in mice) of PKA-RIIβ subunit was robustly decreased in the epileptic foci obtained from both surgical specimens of TLE patients and seizure model mice. The p-RIIβ level was negatively correlated with the activities of PKA. Notably, by using a P-site mutant that cannot be autophosphorylated and thus results in the released catalytic subunit to exert persistent phosphorylation, an increase in PKA activities through transduction with AAV-RIIβ-S112A in hippocampal DG granule cells decreased mIPSC frequency but not mEPSC, enhanced neuronal intrinsic excitability and seizure susceptibility. In contrast, a reduction of PKA activities by RIIβ knockout led to an increased mIPSC frequency, a reduction in neuronal excitability, and mice less prone to experimental seizure onset. Collectively, our data demonstrated that the autophosphorylation of RIIβ subunit plays a critical role in controlling neuronal and network excitabilities by regulating the activities of PKA, providing a potential therapeutic target for TLE.


2021 ◽  
Vol 22 (12) ◽  
pp. 6277
Author(s):  
Joanna A. Motyl ◽  
Joanna B. Strosznajder ◽  
Agnieszka Wencel ◽  
Robert P. Strosznajder

Molecular studies have provided increasing evidence that Parkinson’s disease (PD) is a protein conformational disease, where the spread of alpha-synuclein (ASN) pathology along the neuraxis correlates with clinical disease outcome. Pathogenic forms of ASN evoke oxidative stress (OS), neuroinflammation, and protein alterations in neighboring cells, thereby intensifying ASN toxicity, neurodegeneration, and neuronal death. A number of evidence suggest that homeostasis between bioactive sphingolipids with opposing function—e.g., sphingosine-1-phosphate (S1P) and ceramide—is essential in pro-survival signaling and cell defense against OS. In contrast, imbalance of the “sphingolipid biostat” favoring pro-oxidative/pro-apoptotic ceramide-mediated changes have been indicated in PD and other neurodegenerative disorders. Therefore, we focused on the role of sphingolipid alterations in ASN burden, as well as in a vast range of its neurotoxic effects. Sphingolipid homeostasis is principally directed by sphingosine kinases (SphKs), which synthesize S1P—a potent lipid mediator regulating cell fate and inflammatory response—making SphK/S1P signaling an essential pharmacological target. A growing number of studies have shown that S1P receptor modulators, and agonists are promising protectants in several neurological diseases. This review demonstrates the relationship between ASN toxicity and alteration of SphK-dependent S1P signaling in OS, neuroinflammation, and neuronal death. Moreover, we discuss the S1P receptor-mediated pathways as a novel promising therapeutic approach in PD.


2018 ◽  
Vol 12 ◽  
Author(s):  
Gaojie Pan ◽  
Zhicai Chen ◽  
Honghua Zheng ◽  
Yunwu Zhang ◽  
Huaxi Xu ◽  
...  

2016 ◽  
Vol 397 (3) ◽  
pp. 223-229 ◽  
Author(s):  
Till Georg Alexander Mack ◽  
Patricia Kreis ◽  
Britta Johanna Eickholt

Abstract Ageing is a complex deteriorating process that coincides with changes in metabolism, replicative senescence, increased resistance to apoptosis, as well as progressive mitochondria dysfunction that lead to an increase production and accumulation of reactive oxygen species (ROS). Although controversy on the paradigm of the oxidative damage theory of ageing exists, persuasive studies in Caenorhabditis elegans and yeast have demonstrated that manipulation of ROS can modify the process of ageing and influences the damage of proteins, lipids and DNA. In neurons, ageing impacts on the intrinsic neuronal excitability, it decreases the size of neuronal soma and induces the loss of dendrites and dendritic spines. The actin cytoskeleton is an abundant and broadly expressed system that plays critical functions in many cellular processes ranging from cell motility to controlling cell shape and polarity. It is thus hardly surprising that the expression and the function of actin in neurons is crucial for the morphological changes that occur in the brain throughout life. We propose that alterations in actin filament dynamics in dendritic spines may be one of the key events contributing to the initial phases of ageing in the brain.


2010 ◽  
Vol 365 (1551) ◽  
pp. 2347-2362 ◽  
Author(s):  
Dominique M. Durand ◽  
Eun-Hyoung Park ◽  
Alicia L. Jensen

Conventional neural networks are characterized by many neurons coupled together through synapses. The activity, synchronization, plasticity and excitability of the network are then controlled by its synaptic connectivity. Neurons are surrounded by an extracellular space whereby fluctuations in specific ionic concentration can modulate neuronal excitability. Extracellular concentrations of potassium ([K + ] o ) can generate neuronal hyperexcitability. Yet, after many years of research, it is still unknown whether an elevation of potassium is the cause or the result of the generation, propagation and synchronization of epileptiform activity. An elevation of potassium in neural tissue can be characterized by dispersion (global elevation of potassium) and lateral diffusion (local spatial gradients). Both experimental and computational studies have shown that lateral diffusion is involved in the generation and the propagation of neural activity in diffusively coupled networks. Therefore, diffusion-based coupling by potassium can play an important role in neural networks and it is reviewed in four sections. Section 2 shows that potassium diffusion is responsible for the synchronization of activity across a mechanical cut in the tissue. A computer model of diffusive coupling shows that potassium diffusion can mediate communication between cells and generate abnormal and/or periodic activity in small (§3) and in large networks of cells (§4). Finally, in §5, a study of the role of extracellular potassium in the propagation of axonal signals shows that elevated potassium concentration can block the propagation of neural activity in axonal pathways. Taken together, these results indicate that potassium accumulation and diffusion can interfere with normal activity and generate abnormal activity in neural networks.


2017 ◽  
Vol 149 (8) ◽  
pp. 799-811 ◽  
Author(s):  
Emre Lacin ◽  
Prafulla Aryal ◽  
Ian W. Glaaser ◽  
Karthik Bodhinathan ◽  
Eric Tsai ◽  
...  

G protein–gated inwardly rectifying potassium (GIRK) channels control neuronal excitability in the brain and are implicated in several different neurological diseases. The anionic phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2) is an essential cofactor for GIRK channel gating, but the precise mechanism by which PIP2 opens GIRK channels remains poorly understood. Previous structural studies have revealed several highly conserved, positively charged residues in the “tether helix” (C-linker) that interact with the negatively charged PIP2. However, these crystal structures of neuronal GIRK channels in complex with PIP2 provide only snapshots of PIP2’s interaction with the channel and thus lack details about the gating transitions triggered by PIP2 binding. Here, our functional studies reveal that one of these conserved basic residues in GIRK2, Lys200 (6′K), supports a complex and dynamic interaction with PIP2. When Lys200 is mutated to an uncharged amino acid, it activates the channel by enhancing the interaction with PIP2. Atomistic molecular dynamic simulations of neuronal GIRK2 with the same 6′ substitution reveal an open GIRK2 channel with PIP2 molecules adopting novel positions. This dynamic interaction with PIP2 may explain the intrinsic low open probability of GIRK channels and the mechanism underlying activation by G protein Gβγ subunits and ethanol.


Parasitology ◽  
2016 ◽  
Vol 143 (12) ◽  
pp. 1647-1655 ◽  
Author(s):  
GLÊNIA DAROS SARNÁGLIA ◽  
LUCIANA POLACO COVRE ◽  
FAUSTO EDMUNDO LIMA PEREIRA ◽  
HERBERT LEONEL DE MATOS GUEDES ◽  
ANA MARIA CAETANO FARIA ◽  
...  

SUMMARYObesity is the main causal factor for metabolic syndrome and chronic systemic inflammation, which impacts on immune function and increases susceptibility to pathogens. Here, we investigated the effect of obesity on the outcome of visceral leishmaniasis caused by Leishmaniasis infantum chagasi. C57BL/6 mice fed with high-sugar and butter diet (HSB) showed a significant increase in body weight, adiposity index and morphological changes in adipocyte. To investigate the consequences of obesity on the specific immunity against Leishmania, both control and HSB diet groups were infected with 107L. infantum chagasi promastigotes in the eighth-week after diet started and euthanized 4 weeks later. HSB-diet fed mice exhibited a significantly higher parasite burden in both liver and spleen compared with control- diet group. Gonadal adipocyte tissue from HSB-diet mice showed increased TNF-α, IL-6 and leptin and diminished IL-10 production compared with control. Cytokines production analysis in the spleen and liver from these animals also demonstrated higher production of IFN-γ, TNF-α, IL-6 and nitric oxide and diminished production of IL-10 and TGF-β, which correlate with inflammatory foci and the cell hyperplasia observed. Taken together, obesity can interfere with responses to pathogen-derived signals and impair the development of protective anti-Leishmania immunity.


Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 1037-1048 ◽  
Author(s):  
C.A. Gardner ◽  
K.F. Barald

We have previously shown that one of two chicken engrailed-like genes, chick En-2, is expressed in a restricted region of the early chick embryo brain: the mes/metencephalon (Gardner et al. 1988). In this study, we examine the role of the cellular environment in regulation of engrailed-like (En) protein expression in quail-chick chimeric embryos. Two types of transplant surgery were performed at the 9–15 somite stage to produce chimeric embryos. In the first, the mid-mesencephalic vesicle or caudal mesencephalic vesicle alar plate (which is En protein-positive) was transplanted from a quail embryo into an En protein-negative region of chick neuroepithelium, the prosencephalon (mMP and cMP grafts, respectively). In the second reciprocal surgery, prosencephalic alar plate which is En protein-negative, was transplanted into the En protein-positive mesencephalic vesicle (PM grafts). A polyclonal antiserum, alpha Enhb-1, which recognizes chick En proteins (Davis et al. 1991) was used to identify En-positive cells 48 h after surgery. In mMP embryos, 71% of integrated grafts had lost En expression (n = 17). In contrast, in cMP grafts, 93% of integrated grafts continued to stain with the antiserum (n = 14). In addition, in 86% of these embryos, the graft induced adjacent chick host diencephalic cells to become En protein-positive as well. All PM grafts contained aEnhb-1-positive cells; such cells never expressed this protein in their normal environment. These early changes in En protein expression correlate well with the morphological changes observed in similar graft surgeries assayed later in development. Thus, our results are consistent with the hypothesis that En genes play a role in the regionalization of the early cranial neuroepithelium.


1987 ◽  
Vol 57 (2) ◽  
pp. 496-509 ◽  
Author(s):  
M. McCarren ◽  
B. E. Alger

We have used the rat hippocampal slice preparation as a model system for studying the epileptogenic consequences of a reduction in neuronal Na+-K+ pump activity. The cardiac glycosides (CGs) strophanthidin and dihydroouabain were used to inhibit the pump. These drugs had readily reversible effects, provided they were not applied for longer than 15-20 min. Hippocampal CA1 pyramidal cells were studied with intracellular recordings; population spike responses and changes in extracellular potassium concentration ([K+]o) were also measured in some experiments. This investigation focused on the possibility that intrinsic neuronal properties are affected by Na+-K+ pump inhibitors. The CGs altered the CA1 population response evoked by an orthodromic stimulus from a single spike to an epileptiform burst. Measurements of [K+]o showed that doses of CGs sufficient to cause bursting were associated with only minor (less than 1 mM) changes in resting [K+]o. However, the rate of K+ clearance from the extracellular space was moderately slowed, confirming that a decrease in pump activity had occurred. Intracellular recording indicated that CG application resulted in a small depolarization and apparent increase in resting input resistance of CA1 neurons. Although CGs caused a decrease in fast gamma-aminobutyric acid mediated inhibitory postsynaptic potentials (IPSPs), CGs could also enhance the latter part of the epileptiform burst induced by picrotoxin, an antagonist of these IPSPs. Since intrinsic Ca2+ conductances comprise a significant part of the burst, this suggested the possibility that Na+-K+ pump inhibitors affected an intrinsic neuronal conductance. CGs decreased the threshold for activation of Ca2+ spikes (recorded in TTX and TEA) without enhancing the spikes themselves, indicating that a voltage-dependent subthreshold conductance might be involved. The action of CGs on Ca2+ spike threshold could not be mimicked by increasing [K+]o up to 10 mM. A variety of K+ conductance antagonists, including TEA, 4-AP, Ba2+ (in zero Ca2+), and carbachol were ineffective in preventing the CG-induced threshold shift of the Ca2+ spike. The shift was also seen in the presence of a choline-substituted low Na+ saline. Enhancement of a slow inward Ca2+ current is a possible mechanism for the decrease in Ca2+ spike threshold; however, it is impossible to use the Ca2+ spike as an assay when testing the effects of blocking Ca2+ conductances. Therefore, we studied the influence of CGs on the membrane current-voltage (I-V) curve, since persistent voltage-dependent conductances appear as nonlinearities in the I-V plot obtained under current clamp.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document