scholarly journals A New Approach for Solving the Inverse Kinematics of Continuum Robot Based on Piecewise Constant Curvature Model

Author(s):  
Haoran Wu ◽  
Jingjun Yu ◽  
Jie Pan ◽  
Xu Pei

Abstract The inverse kinematics of continuum robot is an important factor to guarantee the motion accuracy. How to construct a concise inverse kinematics model is very essential for the motion control of continuum robot. In this paper, a new method for solving the inverse kinematics of continuum robot is proposed based on the geometric and numerical method. Assumed that the deformation of the continuum robot is Piecewise Constant Curvature model (PCC), the envelope surface of the continuum robot based on single-segment is modeled and calculated. The clustering method is used to calculate the intersection of the curves. Then, a distinct sequence is designed for solving the inverse kinematics of continuum robot, and it is also suitable for the multi-segment continuum robots in space. Finally, the accuracy of the inverse kinematics algorithm is verified by the simulation and numerical experiment. The experiment results illustrate that this algorithm is with higher accuracy compared with the Jacobian iterative algorithm.

2014 ◽  
Author(s):  
Ammar Amouri ◽  
Chawki Mahfoudi ◽  
Abdelouahab Zaatri ◽  
Halim Merabti

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
GuoHua Gao ◽  
Pengyu Wang ◽  
Hao Wang

Purpose The purpose of this paper is to present a follow-the-leader motion strategy for multi-section continuum robots, which aims to make the robot have the motion ability in a confined environment and avoid a collision. Design/methodology/approach First, the mechanical design of a multi-section continuum robot is introduced and the forward kinematic model is built. After that, the follow-the-leader motion strategy is proposed and the differential evolution (DE) algorithm for calculating optimal posture parameters is presented. Then simulations and experiments are carried out on a series of predefined paths to analyze the performance of the follow-the-leader motion. Findings The follow-the-leader motion can be well performed on the continuum robots this study proposes in this research. The experimental results show that the deviation from the path is less than 9.7% and the tip error is no more than 15.6%. Research limitations/implications Currently, the follow-the-leader motion is affected by the following factors such as gravity and continuum robot design. Furthermore, the position error is not compensated under open-loop control. In future work, this paper will improve the accuracy of the robot and introduce a closed-loop control strategy to improve the motion accuracy. Originality/value The main contribution of this paper is to present an algorithm to generate follow-the-leader motion of the continuum robot based on DE. This method is suitable for solving new arrangements in the process of following a nonlinear path. Then, it is expected to promote the engineering application of the continuum robot.


2020 ◽  
pp. 1-11 ◽  
Author(s):  
Xinbo Chen ◽  
Jiantao Yao ◽  
Tong Li ◽  
Haili Li ◽  
Pan Zhou ◽  
...  

Abstract Cable-driven continuum robots exhibit excellent capabilities in the unstructured environment due to their inherent compliance and dexterity. To improve the reliability and load capacity of continuum robots, increasing the number of cables is often used in the control of continuum robots. However, the number of actuators will increase with the cables. To tackle this challenge, this work proposes a method for increasing the number of cables without increasing actuators in a continuum robot through parallel platforms. The parallel platforms are used to control all the cables in the continuum robot, and can be separated from the continuum robot to enable the remote drive of a manipulation arm by using the cable-tube structure. The manipulation arm is composed of several independent bending modules in series, which can be configured freely according to the demand of degrees of freedom. Further, each bending module is controlled independently by a parallel platform, which can avoid the mutual interference between the cables of one bending module and another one, improve the position accuracy and simplify the control difficulty of the manipulation arm. To evaluate the proposed method, this work develops a prototype of six-cable-driven continuum robot controlled by 3RPS parallel platforms, and presents some basic kinematic models to describe its function, and then an experimental work characterizing its performance. Experimental results illustrated the importance of increasing the number of cables, the rationality of kinematic models of the continuum robot, and the feasibility of controlling multiple cables by a parallel platform.


Author(s):  
Yujiong Liu ◽  
Pinhas Ben-Tzvi

Abstract Inspired by nature, continuum robots show their potential in human-centered environments due to the compliant-to-obstacle features and dexterous mobility. However, there are few such robots successfully implemented outside the laboratory so far. One reason is believed to be due to the real time control challenge for soft robots, which require a highly efficient, highly accurate dynamic model. This paper presents a new systematic methodology to formulate the dynamics of constant curvature continuum robots. The new approach builds on several new techniques: 1) using the virtual work principle to formulate the equation of motion, 2) using specifically selected kinematic representations to separate integral variables from the non-integral variables, and 3) using vector representations to put the integral in a compact form. By doing so, the hard-to-solve integrals are evaluated analytically in advance and the accurate inverse dynamics are established accordingly. Numerical simulations are conducted to evaluate the performances of the newly proposed model.


Robotica ◽  
2019 ◽  
Vol 37 (5) ◽  
pp. 868-882
Author(s):  
Mahdi Bamdad ◽  
M. Mehdi Bahri

SummaryRecently, the idea of applying “jamming” of appropriate media has been exploited for a novel continuum robot design. It is completed by applying vacuum in a robot structure filled with granular media. The backbone deformation and motion are achieved by controlling the fluid pressure. A jammable robotic manipulator does not certainly follow constant curvature during bending, that is, gravitational loads cause section sag. The kinematics describes the deformation of continuum manipulators. This formulation is expected to facilitate additional synthesis and analysis on workspace. This paper presents a Jacobian-based approach to obtain the forward kinematics solution. The proposed kinematic formulation in this paper tries to combine the key advantages of the techniques in constant curvature and variable curvature models. Hence, the deformation of any arbitrary bending is modeled. The workspace synthesis is continued by kinematic analysis, and in this regard, the manipulability measure is computed. This is an important improvement when compared with existing work for this kind of manipulators. It shows how manipulability measure can determine the workspace quality, where usually reachability is used for robot’s capabilities representation. As a result, the forward kinematics and manipulability analysis based on a piecewise-constant-curvature approximation are discussed in the simulation. The simulation has been carried out according to the fabricated experimental robot.


2017 ◽  
Vol 40 (11) ◽  
pp. 3263-3272 ◽  
Author(s):  
Minhan Li ◽  
Rongjie Kang ◽  
Shineng Geng ◽  
Emanuele Guglielmino

Continuum robots are suitable for operating in unstructured environments owing to their intrinsic compliance. This paper presents a novel tendon-driven continuum robot equipped with two modules and a compliant backbone formed by helical springs. Each module is driven by four parallel arranged tendons to implement a redundant actuation system that guarantees dexterous motions of the robot. A position feedback controller for the continuum robot is then developed, and a quadratic programming algorithm is incorporated into the controller to achieve a smooth configuration of the robot. Experiments results show that the control method has good trajectory tracking performance against external disturbances.


Actuators ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 142
Author(s):  
Yong Zhong ◽  
Luohua Hu ◽  
Yinsheng Xu

Traditional rigid robot application in the medical field is limited due to the limited degrees of freedom caused by their material and structure. Inspired by trunk, tentacles, and snakes, continuum robot (CR) could traverse confined space, manipulate objects in complex environment, and conform to curvilinear paths in space. The continuum robot has broad prospect in surgery due to its high dexterity, which can reach circuitous areas of the body and perform precision surgery. Recently, many efforts have been done by researchers to improve the design and actuation methods of continuum robots. Several continuum robots have been applied in clinic surgical interventions and demonstrated superiorities to conventional rigid-link robots. In this paper, we provide an overview of the current development of continuum robots, including the design principles, actuation methods, application prospect, limitations, and challenge. And we also provide perspective for the future development. We hope that with the development of material science, Engineering ethics, and manufacture technology, new methods can be applied to manufacture continuum robots for specific surgical procedures.


Sign in / Sign up

Export Citation Format

Share Document