scholarly journals Topical Application of the Anthraquinone Parietin and Blue Light Illumination Induces Delayed Cell Growth and Necrosis in the Deeper Layers of a Subcutaneously Implanted Tumour

Author(s):  
María Laura Mugas ◽  
Gustavo Calvo ◽  
Juliana Marioni ◽  
Mariela Céspedes ◽  
Florencia Martinez ◽  
...  

Abstract Photodynamic therapy (PDT) is an anticancer treatment involving administration of a tumour-localizing photosensitizer, followed by activation by light of a specific wavelength.In previous work, we showed that the natural anthraquinone (AQ) Parietin (PTN), was a promising photosensitizer for photodynamic therapy of leukemic cells in vitro. The present work aimed to analyze the photosensitizing ability of PTN in the mammary carcinoma LM2 cells in vitro and in vivo in a model of subcutaneously implanted tumours.Photodynamic therapy mediated by Parietin (PTN-PDT) (PTN 30 µM, 1 h and 1.78 J/cm2 of blue light) impaired cell growth and migration of LM2 cells in vitro. PTN per se induced a significant decrease in cell migration, and it was even more marked after illumination (migration index was 0.65 for PTN and 0.30 for PTN-PDT), suggesting that both PTN and parietin-mediated PDT would be potential inhibitors of metastasis.Fluorescence microscopy observation indicated cytoplasmatic localization of the AQ and no fluorescence at all was recorded in the nuclei.When PTN (1.96 mg) dissolved in dimethyl sulfoxide was topically applied on the skin of mice subcutaneously implanted with LM2 cells, PTN orange fluorescence was strongly noticed in the stratum corneum and also in the inner layers of the tumour up to approximately 5 mm. After illumination with 12.74 J/cm2 of blue light, one PDT dose at day 1, induced a significant tumour growth delay at day 3, which was not maintained in time. Therefore, we administered a second PTN-PDT boost on day 3. Under these conditions, the delay of tumour growth was 28 % both on days 3 and 4 of the experiment.Histology of tumours revealed massive tumour necrosis up to 4 mm of depth. Intriguingly, a superficial area of viable tumour in the 1 mm superficial area, and a quite conserved intact skin was evidenced. We hypothesize that this may be due to PTN aggregation in contact with the skin and tumour milieu of the most superficial tumour layers, thus avoiding its photochemical properties.On the other hand, normal skin treated with PTN-PDT exhibited slight histological changes. These preliminary findings encourage further studies of natural AQs administered in different vehicles, for topical treatment of cutaneous malignancies.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
María Laura Mugas ◽  
Gustavo Calvo ◽  
Juliana Marioni ◽  
Mariela Céspedes ◽  
Florencia Martinez ◽  
...  

AbstractPhotodynamic therapy (PDT) is an anticancer treatment involving administration of a tumour-localizing photosensitizer, followed by activation by light of a suitable wavelength. In previous work, we showed that the natural anthraquinone (AQ) Parietin (PTN), was a promising photosensitizer for photodynamic therapy of leukemic cells in vitro. The present work aimed to analyze the photosensitizing ability of PTN in the mammary carcinoma LM2 cells in vitro and in vivo in a model of subcutaneously implanted tumours. Photodynamic therapy mediated by parietin (PTN-PDT) (PTN 30 µM, 1 h and 1.78 J/cm2 of blue light) impaired cell growth and migration of LM2 cells in vitro. PTN per se induced a significant decrease in cell migration, and it was even more marked after illumination (migration index was 0.65 for PTN and 0.30 for PTN-PDT, *p < 0.0001, ANOVA test followed by Tukey’s multiple comparisons test), suggesting that both PTN and PTN-PDT would be potential inhibitors of metastasis. Fluorescence microscopy observation indicated cytoplasmic localization of the AQ and no fluorescence at all was recorded in the nuclei. When PTN (1.96 mg) dissolved in dimethyl sulfoxide was topically applied on the skin of mice subcutaneously implanted with LM2 cells, PTN orange fluorescence was strongly noticed in the stratum corneum and also in the inner layers of the tumour up to approximately 5 mm. After illumination with 12.74 J/cm2 of blue light, one PDT dose at day 1, induced a significant tumour growth delay at day 3, which was not maintained in time. Therefore, we administered a second PTN-PDT boost on day 3. Under these conditions, the delay of tumour growth was 28% both on days 3 and 4 of the experiment (*p < 0.05 control vs. PTN-PDT, two-way ANOVA, followed by Sidak’s multiple comparisons test). Histology of tumours revealed massive tumour necrosis up to 4 mm of depth. Intriguingly, a superficial area of viable tumour in the 1 mm superficial area, and a quite conserved intact skin was evidenced. We hypothesize that this may be due to PTN aggregation in contact with the skin and tumour milieu of the most superficial tumour layers, thus avoiding its photochemical properties. On the other hand, normal skin treated with PTN-PDT exhibited slight histological changes. These preliminary findings encourage further studies of natural AQs administered in different vehicles, for topical treatment of cutaneous malignancies.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


Author(s):  
Marcela Leticia Leal Gonçalves ◽  
Elaine Marcílio Santos ◽  
Ana Cláudia Muniz Renno ◽  
Anna Carolina Ratto Tempestini Horliana ◽  
Matheus de Almeida Cruz ◽  
...  

Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 132-138 ◽  
Author(s):  
B Wormann ◽  
SR Mehta ◽  
AL Maizel ◽  
TW LeBien

Experiments were conducted to determine the effect of low mol wt B cell growth factor (L-BCGF) on B cell precursor acute lymphoblastic leukemia (ALL). L-BCGF induced a significant increase in 3H-TdR incorporation in 28 of 37 bone marrow aspirates from patients with B cell precursor ALL, with stimulation indices ranging from 2 to 129. Fluorescence-activated cell sorting confirmed that in five of seven patients the common acute lymphoblastic leukemia antigen (CALLA)/CD10 positive leukemic cells were responding directly to L-BCGF. L-BCGF was capable of inducing, in some patients, an increase in absolute viable cells and could also induce colony formation in vitro. The response of B cell precursor ALL was not attributable to beta IL 1, IL 2, or gamma interferon. These results indicate that the majority of B cell precursor ALL undergo a proliferative response to L-BCGF, suggesting a regulatory role for this lymphokine in the growth of B cell precursors.


Author(s):  
I. D. C. Galo ◽  
B. E. De Lima ◽  
T. G. Santos ◽  
A. Braoios ◽  
R. P. Prado ◽  
...  

Abstract Antibiotic resistance is one of the greatest challenges to treat bacterial infections worldwide, leading to increase in medical expenses, prolonged hospital stay and increased mortality. The use of blue light has been suggested as an innovative alternative to overcome this problem. In this study we analyzed the antibacterial effect of blue light using low emission parameters on Staphylococcus aureus cultures. In vitro bacterial cultures were used in two experimental approaches. The first approach included single or fractionated blue light application provided by LED emitters (470 nm), with the following fluencies: 16.29, 27.16 and 54.32 J/cm2. For the second approach a power LED (470 nm) was used to deliver 54.32 J/cm2 fractionated in 3 applications. Our results demonstrated that bacterial cultures exposed to fractionated blue light radiation exhibited significantly smaller sizes colonies than the control group after 24 h incubation, however the affected bacteria were able to adapt and continue to proliferate after prolonged incubation time. We could conclude that the hypothetical clinical use of low fluencies of blue light as an antibacterial treatment is risky, since its action is not definitive and proves to be ineffective at least for the strain used in this study.


2020 ◽  
Vol 29 ◽  
pp. 101583
Author(s):  
José Athayde Vasconcelos Morais ◽  
Mosar C. Rodrigues ◽  
Fernanda F. Ferreira ◽  
Kunal Ranjan ◽  
Ricardo Bentes Azevedo ◽  
...  

Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 235-242 ◽  
Author(s):  
Gary R. McLean ◽  
Edward V. Quadros ◽  
Sheldon P. Rothenberg ◽  
A. Charles Morgan ◽  
John W. Schrader ◽  
...  

Abstract The plasma protein transcobalamin II (TCII) binds and delivers cobalamin (Cbl; vitamin B12) to all cells, which internalize the TCII/Cbl complex by receptor-mediated endocytosis. Congenital deficiency of TCII results in intracellular Cbl deficiency, one effect of which is to disrupt DNA synthesis, leading to megaloblastic anemia. We report here an in vitro culture system in which cell growth is dependent on delivery of Cbl to cells by TCII. Recombinant human holo-TCII was shown to support in dose-dependent manner the growth of the human erythroleukemic cell line K562 and the murine lymphoma cell line BW5147. Free Cbl also supported cell growth; however, at 100- to 1,000-fold higher concentrations than those effective in the presence of apo-TCII. To determine if cellular depletion of Cbl could be achieved by interfering with interactions between TCII/Cbl and its cell-surface receptor, several monoclonal antibodies raised against human TCII were studied. Three antibodies, found to compete for the same binding site on TCII, proved to be effective inhibitors of TCII/Cbl-dependent cell growth. Our results suggest that monoclonal anti-TCII antibodies that block the function of this protein may prove useful in antitumor therapies.


2020 ◽  
Vol 5 (4) ◽  
pp. 187-197
Author(s):  
Swati Bhargava ◽  
Thomas Listopadzki ◽  
Sara Diletti ◽  
John K. Crane ◽  
Thomas R. Duquin ◽  
...  

Abstract. Introduction: Cutibacterium acnes is gaining recognition as a leading pathogen after orthopaedic shoulder procedures. Photodynamic therapy, a combination of light and a photosensitizer, has demonstrated antimicrobial activity against C. acnes in the treatment of acne vulgaris. We sought to evaluate the effect of photodynamic therapy using blue light and photosensitizers on C. acnes isolates from shoulder prosthetic joint infections.Methods: C. acnes strains isolated from 19 patients with shoulder PJI were exposed to blue light alone (415 nm) or in combination with photosensitizers (fluorescein, riboflavin and demeclocycline). C. acnes strains were divided into 4 categories: Highly Sensitive (HS), Sensitive (S), Weakly Sensitive (WS), Resistant to blue light.Results: 13 of 19 C. acnes strains (68%) were S or HS to blue light alone. Of these 19 strains tested, 11 were tested with blue light and fluorescein or blue light plus riboflavin. Fluorescein (1 µg/mL) enhanced the effect of blue light in 6 of 11 strains (55%). Blue light plus riboflavin (10 µg/mL) resulted enhanced killing in 3 of 11 strains (27%), but produced a paradoxical photoprotective effect in 4 of 11 strains (36%), resulting in a net decrease compared to blue light alone. Demeclocycline, however, enhanced the effect of blue light in 16 of 17 strains (94 %).Conclusions: Blue light with the addition of photosensitizers killed C. acnes from periprosthetic shoulder infections in vitro, with demeclocycline having the most pronounced effect.


Sign in / Sign up

Export Citation Format

Share Document