scholarly journals The 532 nm Laser Treatment Promotes The Proliferation of Tendon-Derived Stem Cells and Up-Regulates Nr4a1 To Stimulate Tenogenic Differentiation

Author(s):  
Ming Li ◽  
Yiming Zhu ◽  
Qing Pei ◽  
Yuhao Deng ◽  
Tao Ni

Abstract Background The combination of low-level laser therapy (LLLT) and stem cell transplantation with tendon-derived stem cells (TDSCs) as seed cells provides a new treatment strategy for tendon injury. Nevertheless, the effect of LLLT on the biological behavior of TDSCs and its internal mechanisms remain unclear. The purpose of this study was to verify the effect of LLLT with a wavelength of 532 nm on the proliferation and differentiation of TDSCs of Sprague-Dawley (SD) rats. Methods TDSCs were isolated from Achilles tendons of SD rats and identified by cell morphology and flow cytometric analysis. Energy density gradient experiment was performed to determine the ideal energy. Then TDSCs were treated with LLLT using a wavelength of 532 nm at a fluence of 15J/cm2. Cell response after irradiation was observed at 6, 12 and 24 hours to ascertain cell morphology and cell proliferation. RT-PCR was used to detect the RNA expression levels of the key genes of TDSCs differentiation including Scx, Tnmd, Mkx and Dcn, PPARγ, Sox9 and Runx2. Then gene chip microarray was used to detect the expression of differential genes after 532 nm laser intervention in TDSCs, and the target genes were screened out to verify the role of target genes in this process. Results When the 532 nm laser energy density was 15 J/cm2, the proliferation capacity of TDSCs was improved (2.73 ± 0.24 vs. 1.81 ± 0.71, P < 0.05), and the expression of genes related to tenogenic differentiation of TDSCs was significantly increased (P < 0.01), showing the potential of tenogenic differentiation. After RNA-seq and bioinformatics analyses, we speculated that Nr4a1 was involved in the tenogenic differentiation process of TDSCs regulated by 532 nm laser treatment. Subsequent experiments confirmed that Nr4a1 regulated the expression of the tenogenic differentiation genes scleraxis (Scx) and tenomodulin (Tnmd) in TDSCs, affecting the process. Conclusion A 532 nm laser with 15J/cm2 regulated the process of TDSC proliferation and tenogenic differentiation by up-regulating Nr4a, which could accelerate tendon healing.

2021 ◽  
Author(s):  
Ming Li ◽  
Yi-Ming Zhu ◽  
Qing Pei ◽  
Yu-Hao Deng ◽  
Tao Ni

Abstract Background: The combination of low-level laser therapy (LLLT) and stem cell transplantation with tendon-derived stem cells (TDSCs) as seed cells provides a new treatment strategy for tendon injury. Nevertheless, the effect of LLLT on the biological behavior of TDSCs and its internal mechanisms remain unclear. This study aimed to verify the effect of LLLT with a wavelength of 532 nm on the proliferation and differentiation of TDSCs of Sprague-Dawley (SD) rats. Methods: TDSCs were isolated from Achilles tendons of SD rats and identified by cell morphology and flow cytometric analysis. Energy density gradient experiment was performed to determine the ideal energy. Then TDSCs were treated with LLLT using a wavelength of 532 nm at a fluence of 15 J/cm2. Cell response after irradiation was observed at 6, 12 and 24 hours to ascertain cell morphology and cell proliferation. The RNA expression levels of the key genes of TDSCs differentiation, including Scx, Tnmd, Mkx and Dcn, PPARγ, Sox9 and Runx2, were detected by RT-PCR. Then gene chip microarray was used to detect the expression of differential genes after 532 nm laser intervention in TDSCs, and the target genes were screened out to verify the role of target genes in this process.Results: When the 532 nm laser energy density was 15 J/cm2, the proliferation capacity of TDSCs was improved (2.73 ± 0.24 vs. 1.81 ± 0.71, P < 0.05), and the expression of genes related to tenogenic differentiation of TDSCs was significantly increased (P < 0.01), showing the potential of tenogenic differentiation. After RNA-seq and bioinformatics analyses, we speculated that Nr4a1 was involved in the tenogenic differentiation process of TDSCs regulated by 532 nm laser treatment. Subsequent experiments confirmed that Nr4a1 regulated the expression of the tenogenic differentiation genes scleraxis (Scx) and tenomodulin (Tnmd) in TDSCs, affecting the process. Conclusion: A 532 nm laser with 15 J/cm2 regulated the process of TDSC proliferation and tenogenic differentiation by up-regulating Nr4a1, which could accelerate tendon healing.


2021 ◽  
Vol 22 (8) ◽  
pp. 3913
Author(s):  
Satoshi Nakata ◽  
Ming Yuan ◽  
Jeffrey A. Rubens ◽  
Ulf D. Kahlert ◽  
Jarek Maciaczyk ◽  
...  

Central nervous system tumor with BCL6-corepressor internal tandem duplication (CNS-BCOR ITD) is a malignant entity characterized by recurrent alterations in exon 15 encoding the essential binding domain for the polycomb repressive complex (PRC). In contrast to deletion or truncating mutations seen in other tumors, BCOR expression is upregulated in CNS-BCOR ITD, and a distinct oncogenic mechanism has been suggested. However, the effects of this change on the biology of neuroepithelial cells is poorly understood. In this study, we introduced either wildtype BCOR or BCOR-ITD into human and murine neural stem cells and analyzed them with quantitative RT-PCR and RNA-sequencing, as well as growth, clonogenicity, and invasion assays. In human cells, BCOR-ITD promoted derepression of PRC2-target genes compared to wildtype BCOR. A similar effect was found in clinical specimens from previous studies. However, no growth advantage was seen in the human neural stem cells expressing BCOR-ITD, and long-term models could not be established. In the murine cells, both wildtype BCOR and BCOR-ITD overexpression affected cellular differentiation and histone methylation, but only BCOR-ITD increased cellular growth, invasion, and migration. BCOR-ITD overexpression drives transcriptional changes, possibly due to altered PRC function, and contributes to the oncogenic transformation of neural precursors.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Won-Yong Jeon ◽  
Seyoung Mun ◽  
Wei Beng Ng ◽  
Keunsoo Kang ◽  
Kyudong Han ◽  
...  

Enzymatic biofuel cells (EBFCs) have excellent potential as components in bioelectronic devices, especially as active biointerfaces to regulate stem cell behavior for regenerative medicine applications. However, it remains unclear to what extent EBFC-generated electrical stimulation can regulate the functional behavior of human adipose-derived mesenchymal stem cells (hAD-MSCs) at the morphological and gene expression levels. Herein, we investigated the effect of EBFC-generated electrical stimulation on hAD-MSC cell morphology and gene expression using next-generation RNA sequencing. We tested three different electrical currents, 127 ± 9, 248 ± 15, and 598 ± 75 nA/cm2, in mesenchymal stem cells. We performed transcriptome profiling to analyze the impact of EBFC-derived electrical current on gene expression using next generation sequencing (NGS). We also observed changes in cytoskeleton arrangement and analyzed gene expression that depends on the electrical stimulation. The electrical stimulation of EBFC changes cell morphology through cytoskeleton re-arrangement. In particular, the results of whole transcriptome NGS showed that specific gene clusters were up- or down-regulated depending on the magnitude of applied electrical current of EBFC. In conclusion, this study demonstrates that EBFC-generated electrical stimulation can influence the morphological and gene expression properties of stem cells; such capabilities can be useful for regenerative medicine applications such as bioelectronic devices.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sophia K. Theodossiou ◽  
Jett B. Murray ◽  
LeeAnn A. Hold ◽  
Jeff M. Courtright ◽  
Anne M. Carper ◽  
...  

Abstract Background Tissue engineered and regenerative approaches for treating tendon injuries are challenged by the limited information on the cellular signaling pathways driving tenogenic differentiation of stem cells. Members of the transforming growth factor (TGF) β family, particularly TGFβ2, play a role in tenogenesis, which may proceed via Smad-mediated signaling. However, recent evidence suggests some aspects of tenogenesis may be independent of Smad signaling, and other pathways potentially involved in tenogenesis are understudied. Here, we examined the role of Akt/mTORC1/P70S6K signaling in early TGFβ2-induced tenogenesis of mesenchymal stem cells (MSCs) and evaluated TGFβ2-induced tenogenic differentiation when Smad3 is inhibited. Methods Mouse MSCs were treated with TGFβ2 to induce tenogenesis, and Akt or Smad3 signaling was chemically inhibited using the Akt inhibitor, MK-2206, or the Smad3 inhibitor, SIS3. Effects of TGFβ2 alone and in combination with these inhibitors on the activation of Akt signaling and its downstream targets mTOR and P70S6K were quantified using western blot analysis, and cell morphology was assessed using confocal microscopy. Levels of the tendon marker protein, tenomodulin, were also assessed. Results TGFβ2 alone activated Akt signaling during early tenogenic induction. Chemically inhibiting Akt prevented increases in tenomodulin and attenuated tenogenic morphology of the MSCs in response to TGFβ2. Chemically inhibiting Smad3 did not prevent tenogenesis, but appeared to accelerate it. MSCs treated with both TGFβ2 and SIS3 produced significantly higher levels of tenomodulin at 7 days and morphology appeared tenogenic, with localized cell alignment and elongation. Finally, inhibiting Smad3 did not appear to impact Akt signaling, suggesting that Akt may allow TGFβ2-induced tenogenesis to proceed during disruption of Smad3 signaling. Conclusions These findings show that Akt signaling plays a role in TGFβ2-induced tenogenesis and that tenogenesis of MSCs can be initiated by TGFβ2 during disruption of Smad3 signaling. These findings provide new insights into the signaling pathways that regulate tenogenic induction in stem cells.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2340
Author(s):  
Angelina T. Regua ◽  
Noah R. Aguayo ◽  
Sara Abu Jalboush ◽  
Daniel L. Doheny ◽  
Sara G. Manore ◽  
...  

JAK2–STAT3 and TrkA signaling pathways have been separately implicated in aggressive breast cancers; however, whether they are co-activated or undergo functional interaction has not been thoroughly investigated. Herein we report, for the first time that STAT3 and TrkA are significantly co-overexpressed and co-activated in triple-negative breast cancer (TNBC) and HER2-enriched breast cancer, as shown by immunohistochemical staining and data mining. Through immunofluorescence staining–confocal microscopy and immunoprecipitation–Western blotting, we found that TrkA and STAT3 co-localize and physically interact in the cytoplasm, and the interaction is dependent on STAT3-Y705 phosphorylation. TrkA–STAT3 interaction leads to STAT3 phosphorylation at Y705 by TrkA in breast cancer cells and cell-free kinase assays, indicating that STAT3 is a novel substrate of TrkA. β-NGF-mediated TrkA activation induces TrkA–STAT3 interaction, STAT3 nuclear transport and transcriptional activity, and the expression of STAT3 target genes, SOX2 and MYC. The co-activation of both pathways promotes breast cancer stem cells. Finally, we found that TNBC and HER2-enriched breast cancer with JAK2–STAT3 and TrkA co-activation are positively associated with poor overall metastasis-free and organ-specific metastasis-free survival. Collectively, our study uncovered that TrkA is a novel activating kinase of STAT3, and their co-activation enhances gene transcription and promotes breast cancer stem cells in TNBC and HER2-enriched breast cancer.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Gayathri Subramanian ◽  
Alexander Stasuk ◽  
Mostafa Elsaadany ◽  
Eda Yildirim-Ayan

Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Daniela Bastianelli ◽  
Camilla Siciliano ◽  
Rosa Puca ◽  
Andrea Coccia ◽  
Colin Murdoch ◽  
...  

Mesenchymal stem cells (MSCs) represent a promising cell population for cell therapy and regenerative medicine applications. However, how variations in glucose are perceived by MSC pool is still unclear. Since, glucose metabolism is cell type and tissue dependent, this must be considered when MSCs are derived from alternative sources such as the heart. The zinc finger transcription factor Egr-1 is an important early response gene, likely to play a key role in the glucose-induced response. Our aim was to investigate how short-term changes inin vitroglucose concentrations affect multipotent cardiac tissue-derived MSCs (cMSCs) in a mouse model of Egr-1 KO (Egr-1−/−). Results showed that loss of Egr-1 does not significantly influence cMSC proliferation. In contrast, responses to glucose variations were observed in wt but not in Egr-1−/−cMSCs by clonogenic assay. Phenotype analysis by RT-PCR showed that cMSCs Egr-1−/−lost the ability to regulate the glucose transporters GLUT-1 and GLUT-4 and, as expected, the Egr-1 target genes VEGF, TGFβ-1, and p300. Acetylated protein levels of H3 histone were impaired in Egr-1−/−compared to wt cMSCs. We propose that Egr-1 acts as immediate glucose biological sensor in cMSCs after a short period of stimuli, likely inducing epigenetic modifications.


2018 ◽  
Vol 51 (3) ◽  
pp. 1087-1102 ◽  
Author(s):  
Lijun Duan ◽  
He Zhao ◽  
Yang Xiong ◽  
Xiangsheng Tang ◽  
Yongdong Yang ◽  
...  

Background/Aims: Osteoporosis is a bone metabolic disease characterized by a systemic impairment of bone mass, which results in increased propensity of fragility fractures. A reduction in the differentiation of MSCs into osteoblasts contributes to the impaired bone formation observed in osteoporosis. Mesenchymal stem cells (MSCs) are induced to differentiate into preosteoblasts, which are regulated by the signaling cascades initiated by the various signals, including miRNAs. miR-16-2* is a newly discovered miRNA that participates in diagnosis and prognosis of hepatocellular carcinoma, cervical cancer and chronic lymphocytic leukemia. However, the effect of miR-16-2* on the regulation of osteoblast differentiation and the mechanism responsible are still unclear. Here we discuss the contribution of miR-16-2* to osteoporosis, osteoblast differentiation and mineralization. Methods: The expression pattern of miR-16-2* during osteogenesis or in osteoporosis bone samples was validated by quantitative real-time PCR (qRT-PCR). The human bone marrow mesenchymal stem cells (hBMSCs) were induced to differentiate into osteoblasts by osteogenic induced medium containing dexamethasone, ascorbate-2-phosphat, beta-glycerophosphate and vitamin-D3. The target genes of miR-16-2* were predicted by TargetScan and PicTar. The mRNA and protein levels of osteogenic key markers were detected using qRT-PCR or western blot respectively. The WNT signal activity was analyzed by TOP/FOP reporter assay. Results: The expression of miR-16-2* in patient bone tissue with osteoporosis was negatively correlated with bone formation related genes. During osteoblast differentiation process, the expression of miR-16-2* was significantly decreased. Upregulation of miR-16-2* in hBMSCs impaired the osteogenic differentiation while the downregulation of miR-16-2* increased this process. Upregulation the expression of miR-16-2* could also block the WNT signal pathway by directly target WNT5A. Furthermore, knockdown of miR-16-2* could promote the activation of RUNX2, possibly by lifting the inhibitory effect of miR-16-2* on WNT pathway. Conclusion: Taken together, we report a novel biological role of miR-16-2* in osteogenesis through regulating WNT5A response for the first time. Our data support the potential utilization of miRNA-based therapies in regenerative medicine.


2012 ◽  
Vol 33 (3) ◽  
pp. 530-540 ◽  
Author(s):  
Nathalie Boone ◽  
Aurélie Bergon ◽  
Béatrice Loriod ◽  
Arnaud Devèze ◽  
Catherine Nguyen ◽  
...  

Author(s):  
Minomi K. Subapanditha ◽  
Ashley A. Adile ◽  
Chitra Venugopal ◽  
Sheila K. Singh

Sign in / Sign up

Export Citation Format

Share Document