scholarly journals Modulation by Phosphonium Ions of the Activity of Mitotropic Agents Based on the Chemiluminescence of Luminols

Author(s):  
Gemma M. Rodríguez-Muñiz ◽  
Theodoros Mikroulis ◽  
Anna Pantelia ◽  
Georgios Rotas ◽  
M. Consuelo Cuquerella ◽  
...  

Abstract Mitochondria-targeting drugs and diagnostics are used in the monitoring and treatment of mitochondrial pathologies. In this respect, a great number of functional compounds have been made mitotropic by covalently attaching the active moiety onto a triphenylphosphonium (TPP) cation. Among these compounds, a number of molecular detectors for reactive oxygen species (ROS) are based on fluorescent and chemiluminescent probes. In this regard, luminol (probably the most widely known chemiluminescent molecule) has been employed for a number of biological applications, including ROS detection. Its oxidation under specific conditions triggers a cascade of reactions, ultimately leading to the excited 3-aminophthalate (3AP*), which emits light upon deactivation. Hence, the photophysical interaction between the light emitting species 3AP* and TPP cations needs to be evaluated, as it can add valuable information on the design of novel emission-based mitotropic systems. We herein investigate the quenching effect of ethyltriphenylphosphonium cation onto substituted 3-aminophthalates. These were prepared in situ upon the hydrolysis of the corresponding anhydrides, which were synthesized from 3-aminophthalimides. Steady-state fluorescence and time-resolved experiments were employed for the evaluation of a possible electron transfer quenching by phosphonium ions. Our experimental results confirmed such quenching, suggesting it is mainly dynamic in nature. A minor contribution of static quenching that was also detected is attributed to complex formation in the ground state. Accordingly, the chemiluminescence of luminol was indeed strongly reduced in the presence of phosphonium ions. Our results have to be taken into account during the design of new chemiluminescent mitotropic drugs or diagnostic agents of the luminol family.

1961 ◽  
Vol 38 (4) ◽  
pp. 545-562 ◽  
Author(s):  
L. Kecskés ◽  
F. Mutschler ◽  
I. Glós ◽  
E. Thán ◽  
I. Farkas ◽  
...  

ABSTRACT 1. An indirect paperchromatographic method is described for separating urinary oestrogens; this consists of the following steps: acidic hydrolysis, extraction with ether, dissociation of phenol-fractions with partition between the solvents. Previous purification of phenol fraction with the aid of paperchromatography. The elution of oestrogen containing fractions is followed by acetylation. Oestrogen acetate is isolated by re-chromatography. The chromatogram was developed after hydrolysis of the oestrogens 'in situ' on the paper. The quantity of oestrogens was determined indirectly, by means of an iron-reaction, after the elution of the iron content of the oestrogen spot, which was developed by the Jellinek-reaction. 2. The method described above is satisfactory for determining urinary oestrogen, 17β-oestradiol and oestriol, but could include 16-epioestriol and other oestrogenic metabolites. 3. The sensitivity of the method is 1.3–1.6 μg/24 hours. 4. The quantitative and qualitative determination of urinary oestrogens with the above mentioned method was performed in 50 pregnant and 9 non pregnant women, and also in 2 patients with granulosa cell tumour.


Author(s):  
J. Allègre ◽  
P. Lefebvre ◽  
J. Camassel ◽  
B. Beaumont ◽  
Pierre Gibart

Time-resolved photoluminescence spectra have been recorded on three GaN epitaxial layers of thickness 2.5 μm, 7 μm and 16 μm, at various temperatures ranging from 8K to 300K. The layers were deposited by MOVPE on (0001) sapphire substrates with standard AlN buffer layers. To achieve good homogeneities, the growth was in-situ monitored by laser reflectometry. All GaN layers showed sharp excitonic peaks in cw PL and three excitonic contributions were seen by reflectivity. The recombination dynamics of excitons depends strongly upon the layer thickness. For the thinnest layer, exponential decays with τ ~ 35 ps have been measured for both XA and XB free excitons. For the thickest layer, the decay becomes biexponential with τ1 ~ 80 ps and τ2 ~ 250 ps. These values are preserved up to room temperature. By solving coupled rate equations in a four-level model, this evolution is interpreted in terms of the reduction of density of both shallow impurities and deep traps, versus layer thickness, roughly following a L−1 law.


2020 ◽  
Author(s):  
Polla Rouf ◽  
Pitsiri Sukkaew ◽  
Lars Ojamäe ◽  
Henrik Pedersen

<p>Aluminium nitride (AlN) is a semiconductor with a wide range of applications from light emitting diodes to high frequency transistors. Electronic grade AlN is routinely deposited at 1000 °C by chemical vapour deposition (CVD) using trimethylaluminium (TMA) and NH<sub>3</sub> while low temperature CVD routes to high quality AlN are scarce and suffer from high levels of carbon impurities in the film. We report on an ALD-like CVD approach with time-resolved precursor supply where thermally induced desorption of methyl groups from the AlN surface is enhanced by the addition of an extra pulse, H<sub>2</sub>, N<sub>2</sub> or Ar between the TMA and NH<sub>3</sub> pulses. The enhanced desorption allowed deposition of AlN films with carbon content of 1 at. % at 480 °C. Kinetic- and quantum chemical modelling suggest that the extra pulse between TMA and NH<sub>3</sub> prevents re-adsorption of desorbing methyl groups terminating the AlN surface after the TMA pulse. </p>


2020 ◽  
Author(s):  
Luzia S. Germann ◽  
Sebastian T. Emmerling ◽  
Manuel Wilke ◽  
Robert E. Dinnebier ◽  
Mariarosa Moneghini ◽  
...  

Time-resolved mechanochemical cocrystallisation studies have so-far focused solely on neat and liquid-assisted grinding. Here, we report the monitoring of polymer-assisted grinding reactions using <i>in situ</i> X-ray powder diffraction, revealing that reaction rate is almost double compared to neat grinding and independent of the molecular weight and amount of used polymer additives.<br>


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


2013 ◽  
Vol 85 (17) ◽  
pp. 8121-8126 ◽  
Author(s):  
Britta Opitz ◽  
Andreas Prediger ◽  
Christian Lüder ◽  
Marrit Eckstein ◽  
Lutz Hilterhaus ◽  
...  

2005 ◽  
Vol 892 ◽  
Author(s):  
Andrei Osinsky ◽  
Jianwei Dong ◽  
J. Q. Xie ◽  
B. Hertog ◽  
A. M. Dabiran ◽  
...  

AbstractThis paper reviews of some of the progress made in the development of ZnO-based light emitting diodes (LEDs). n-ZnO/p-AlGaN-based heterostructures have been successfully for the fabrication of UV emitting LEDs that have operated at temperatures up to 650K, suggesting an excitonic origin for the optical transitions. RF-plasma-assisted molecular beam epitaxy has been used to grow epitaxial CdxZn1-xO films on GaN/sapphire structure. These films have a single-crystal wurtzite structure as demonstrated by structural and compositional analysis. High quality CdxZn1-xO films were grown with up to x=0.78 mole fraction as determined by RBS and SIMS techniques. Optical emission ranging from purple (Cd0.05Zn0.95O) to yellow (Cd0.29Zn0.71O) was observed. Compositional fluctuations in a Cd0.16Zn0.84O films were not detected by spatially resolved CL measurements, although intensity fluctuation with features of ∼0.5 μm diameter were seen on the intensity maps. Time resolved photoluminescence shows multi-exponential decay with 21 psec. and 49±3 psec. lifetimes, suggesting that composition micro-fluctuations may be present in Cd0.16Zn0.84O film.


2021 ◽  
Vol 11 (6) ◽  
pp. 2021-2025
Author(s):  
Liujin Wei ◽  
Guan Huang ◽  
Yajun Zhang

The combination of time-resolved transient photoluminescence with in-situ Fourier transform infrared spectroscopy has been conducted to investigate the intrinsic phase structure-dependent activity of Bi2O3 catalyst for CO2 reduction.


Sign in / Sign up

Export Citation Format

Share Document