scholarly journals Use of Immobilized Enzyme In Granular Activated Carbon And Chitosan Beads For Phenol Removal From Effluents

Author(s):  
Ana Carina Cruz de Mello ◽  
Felipe Pereira da Silva ◽  
Andrea Medeiros Salgado ◽  
Fabiana Valéria da Fonseca

Abstract Tyrosinase enzyme present in a crude extract was immobilized in granular activated carbon (GAC) and activated chitosan beads (ACB). It was possible to immobilize up to 70.0 % of the enzymes in GAC in the conditions of 10.0 g of support, 15.7 rad/s of agitation and 90 minutes of contact time, and 100.0 % of enzymes in ACB when using 5 g of support, agitation of 15.7 rad/s and contact time of 120 minutes. In enzymatic oxidation tests, tyrosinase immobilized in GAC was able to achieve a final phenol concentration below the limit required by Brazilian law, 0.5 mg/L for phenol solutions with an initial concentration up to 20.0 mg/L while the enzyme immobilized in ACB was able to adapt solutions with initial concentrations of phenol up to 40.0 mg /L. It was possible to reuse the enzyme immobilized in GAC 2 times, maintaining the same phenol removal efficiency, while the enzyme immobilized in ACB maintained up to 98.0 % of its efficiency in 5 cycles of enzymatic oxidation of solutions with 10.0 mg/L of phenol initially. It was possible to maintain the same phenol removal efficiency as immobilized enzymes when stored for up to 2 weeks.

2012 ◽  
Vol 610-613 ◽  
pp. 1639-1644
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Qi Lei Feng

This study investigated the treatment of methyl orange dye from aqueous solution with granular activated carbon as sorbents. Adsorption experiments were carried out at different contact time, the dosage of granular activated carbon, pH and initial dye concentration.Orthogonal experiment was designed to analyze the influence degree of operating parameters for optimizing adsorption process. The results demonstrated that the dosage of granular activated carbon had the greatest impact on the removal efficiency of methyl orange , followed by pH, contact time and initial concentration of methyl orange . The granular activated carbon possessed good adsorption capacity to methyl orange which the removal efficiency could reached 98.06% at the optimum dosage 4g and optimum time 90min.


2013 ◽  
Vol 6 (1) ◽  
pp. 25-28 ◽  
Author(s):  
Mária Valičková ◽  
Ján Derco ◽  
Katarína Šimovičová

Abstract The paper is focused on the removal of selected priority hazardous substances. Five chlorinated pesticides, i.e. hexachlorobenzene (HCHB), hexachlorobutadiene (HCHBD), lindane (LIN), pentachlorobenzene (PCHB) and heptachlor (HCH) were selected as model pollutants. Higher volatility is characteristic for these substances. Adsorption of these pollutants on granular activated carbon (GAC), zeolite (Zeo) and activated sludge (AS) was investigated. The effect of contact time on the removal efficiency of studied substances was investigated. From results of the work it follows that the highest removal efficiency of studied substances was achieved by the adsorption on activated sludge. This was followed by adsorption efficiency on zeolite. The lowest removal efficiency was measured for adsorption on granular activated carbon.


2012 ◽  
Vol 164 ◽  
pp. 297-301 ◽  
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Qing Chao Gong ◽  
Cun Cun Chen ◽  
Cai Hong Zheng ◽  
...  

Low cost carbonaceous materials were evaluated for their ability to remove phenol from wastewater. The effects of adsorbents dosage, contact time and maximum adsorption capacity were investigated for granular activated carbon, powdered activated carbon, petroleum coke and multi-walled carbon nanotube (MWNT). Equilibrium studies were conducted in 50mg/L initial phenol concentration, solution pH of 5 and at temperature of 23°C. The results showed the adsorption process was fast and it reached equilibrium in 3 h. Petroleum coke and MWNT had poor adsorption which could reach the removal efficiency of phenol with 43.18% and 36.64% respectively. The granular activated carbon possessed good adsorption ability to phenol with 96.40% at the optimum dosage 5g and optimum time 90min.The powdered activated carbon was an effective adsorbent with a maximum adsorption capacity of 42.32 mg/g.


2019 ◽  
Vol 14 (4) ◽  
pp. 897-907 ◽  
Author(s):  
Hosseinali Asgharnia ◽  
Hamidreza Nasehinia ◽  
Roohollah Rostami ◽  
Marziah Rahmani ◽  
Seyed Mahmoud Mehdinia

Abstract Phenol and its derivatives are organic pollutants with dangerous effects, such as poisoning, carcinogenicity, mutagenicity, and teratogenicity in humans and other organisms. In this study, the removal of phenol from aqueous solution by adsorption on silica and activated carbon of rice husk was investigated. In this regard, the effects of initial concentration of phenol, pH, dosage of the adsorbents, and contact time on the adsorption of phenol were investigated. The results showed that the maximum removal of phenol by rice husk silica (RHS) and rice husk activated carbon (RHAC) in the initial concentration of 1 mgL−1 phenol, 2 gL−1 adsorbent mass, 120 min contact time, and pH 5 (RHS) or pH 6 (RHAC) were obtained up to 91% and 97.88%, respectively. A significant correlation was also detected between increasing contact times and phenol removal for both adsorbents (p < 0.01). The adsorption process for both of the adsorbents was also more compatible with the Langmuir isotherm. The results of this study showed that RHS and RHAC can be considered as natural and inexpensive adsorbents for water treatment.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2754
Author(s):  
Daniela Reif ◽  
Ernis Saracevic ◽  
Monika Šabić Runjavec ◽  
Julia Haslinger ◽  
Heidemarie Schaar ◽  
...  

The loading of granular activated carbon (GAC) is influenced by the amount of water treated and the concentrations of adsorbates present in the water matrix. Through extraction experiments, we aimed to investigate the total adsorbed mass of eight organic micropollutants by using ethanol as solvent and the maximum possible concentrations, due to the desorption of organic micropollutants, in water. Three different drying methods and the impact of the contact time, GAC particle size, and GAC/solvent ratio were investigated. Although no significant differences between the drying methods could be observed, the chosen contact time and particle size had a significant impact on the amount of organic micropollutants extracted. Lower GAC/solvent ratios positively affected the extraction yield. The masses extracted in ethanol were compared with the cumulated masses calculated from 72 feed and effluent samples, collected during filter operation, resulting in extraction yields between 0.5% and 30%. The composition of extracted micropollutants in ethanol reflected the concentrations in feed water of the pilot-scale filter. Desorption in water was mostly influenced by the solubility of the investigated micropollutants. The same substances found in the supernatants inf the experiments could also be identified in the backwash water of the filter.


2014 ◽  
Vol 1056 ◽  
pp. 134-137
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Xin Pang

The absorbents including MnO2, fly ash, NaY zeolite and activated carbon powder were used to study the adsorption capacity of phenol. The effect of contact time and dosage of absorbents on the removal efficiency were investigated. The experimental results suggested that activated carbon powder is most effective absorbent, following as fly ash, MnO2 and NaY zeolite which the removal efficiency could reached 98.41%,77.65%, 60.19% and 24.13% at 90min respectively. The data indicated that the activated carbon powder was favorable for adsorption while NaY zeolite was unfit for absorbent of phenol from aqueous solution due to lower removal.


Sign in / Sign up

Export Citation Format

Share Document