scholarly journals Impact of Climate Change on Three Indicator Galliformes Species in The Northern Highlands of Pakistan

Author(s):  
Babar Zahoor ◽  
Xuehua Liu ◽  
Melissa Songer

Abstract Global temperatures are predicted to rise from between 1.4 to 5.8°C by 21st century, which could result in a 20 to 30% extinction of species. The negative impacts of climate change on the northern highlands of Pakistan (NHP) could change the species composition. Range shifts and range reduction in the forested landscapes will dramatically affect the distribution of forest dwelling species, including the Galliformes (ground birds). Three Galliformes (e.g., Lophophorus impejanus, Pucrasia macrolopha and Tragopan melanocephalus) are indicator species of the environment and currently distributed in NHP. For this study, we used Maximum Entropy Model (MaxEnt) to simulate the current and future (in 2050 and 2070) distributions of the species using three General Circulation Models (GCMs) and two climate change scenarios, i.e., RCP4.5 (moderate carbon emission scenario) and RCP8.5 (peak carbon emission scenario). Our results indicated that (i) all the three species would be negatively affected by the climate change in 2050 and in 2070. (ii) Under all three climate scenarios, species distribution was predicted to both reduce and shift towards higher altitudes. (iii) Across the provinces in the NHP, the species were predicted to lose over one quarter in 2050 and one-third by 2070 of the current suitable habitat. (iv) The maximum area of climate refugia was projected between the altitudinal range of 2000 m to 4000 m and predicted to shift towards higher altitudes primarily >3000 m in the future. The proposed implications such as establishment and upgradation of the protected areas, ban on hunting, timber mafia and temporary settlements of the local people in the forested landscapes should be under special consideration to mitigate the impact of climate change.

2016 ◽  
Vol 8 (1) ◽  
pp. 10-21
Author(s):  
Narayan P Gautam ◽  
Manohar Arora ◽  
N.K. Goel ◽  
A.R.S. Kumar

Climate change has been emerging as one of the challenges in the global environment. Information of predicted climatic changes in basin scale is highly useful to know the future climatic condition in the basin that ultimately becomes helpful to carry out planning and management of the water resources available in the basin. Climatic scenario is a plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate change. This study based on statistical downscaling, provide good example focusing on predicting the rainfall and runoff patterns, using the coarse general circulation model (GCM) outputs. The outputs of the GCMs are utilized to study the impact of climate change on water resources. The present study has been taken up to identify the climate change scenarios for Satluj river basin, India.Journal of Hydrology and Meteorology, Vol. 8(1) p.10-21


Author(s):  
Diana Fiorillo ◽  
Zoran Kapelan ◽  
Maria Xenochristou ◽  
Francesco De Paola ◽  
Maurizio Giugni

AbstractAssessing the impact of climate change on water demand is a challenging task. This paper proposes a novel methodology that quantifies this impact by establishing a link between water demand and weather based on climate change scenarios, via Coupled General Circulation Models. These models simulate the response of the global climate system to increasing greenhouse gas concentrations by reproducing atmospheric and ocean processes. In order to establish the link between water demand and weather, Random Forest models based on weather variables were used. This methodology was applied to a district metered area in Naples (Italy). Results demonstrate that the total district water demand may increase by 9–10% during the weeks with the highest temperatures. Furthermore, results show that the increase in water demand changes depending on the social characteristics of the users. The water demand of employed users with high education may increase by 13–15% when the highest temperatures occur. These increases can seriously affect the capacity and operation of existing water systems.


2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


2012 ◽  
Vol 3 (3) ◽  
pp. 207-224 ◽  
Author(s):  
Dao Nguyen Khoi ◽  
Tadashi Suetsugi

The Be River Catchment was studied to quantify the potential impact of climate change on the streamflow using a multi-model ensemble approach. Climate change scenarios (A1B and B1) were developed from an ensemble of four GCMs (general circulation models) (CGCM3.1 (T63), CM2.0, CM2.1 and HadCM3) that showed good performance for the Be River Catchment through statistical evaluations between 15 GCM control simulations and the corresponding time series of observations at annual and monthly levels. The Soil and Water Assessment Tool (SWAT) was used to investigate the impact on streamflow under climate change scenarios. The model was calibrated and validated using daily streamflow records. The calibration and validation results indicated that the SWAT model was able to simulate the streamflow well, with Nash–Sutcliffe efficiency exceeding 0.78 for the Phuoc Long station and 0.65 for the Phuoc Hoa station, for both calibration and validation at daily and monthly steps. Their differences in simulating the streamflow under future climate scenarios were also investigated. The results indicate a 1.0–2.9 °C increase in annual temperature and a −4.0 to 0.7% change in annual precipitation corresponding to a change in streamflow of −6.0 to −0.4%. Large decreases in precipitation and runoff are observed in the dry season.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 689
Author(s):  
Gisel Garza ◽  
Armida Rivera ◽  
Crystian Sadiel Venegas Barrera ◽  
José Guadalupe Martinez-Ávalos ◽  
Jon Dale ◽  
...  

Walker’s Manihot, Manihot walkerae, is an endangered plant that is endemic to the Tamaulipan thornscrub ecoregion of extreme southern Texas and northeastern Mexico. M. walkerae populations are highly fragmented and are found on both protected public lands and private property. Habitat loss and competition by invasive species are the most detrimental threats for M. walkerae; however, the effect of climate change on M. walkerae’s geographic distribution remains unexplored and could result in further range restrictions. Our objectives are to evaluate the potential effects of climate change on the distribution of M. walkerae and assess the usefulness of natural protected areas in future conservation. We predict current and future geographic distribution for M. walkerae (years 2050 and 2070) using three different general circulation models (CM3, CMIP5, and HADGEM) and two climate change scenarios (RCP 4.5 and 8.5). A total of nineteen spatially rarefied occurrences for M. walkerae and ten non-highly correlated bioclimatic variables were inputted to the maximum entropy algorithm (MaxEnt) to produce twenty replicates per scenario. The area under the curve (AUC) value for the consensus model was higher than 0.90 and the partial ROC value was higher than 1.80, indicating a high predictive ability. The potential reduction in geographic distribution for M. walkerae by the effect of climate change was variable throughout the models, but collectively they predict a restriction in distribution. The most severe reductions were 9% for the year 2050 with the CM3 model at an 8.5 RCP, and 14% for the year 2070 with the CMIP5 model at the 4.5 RCP. The future geographic distribution of M. walkerae was overlapped with protected lands in the U.S. and Mexico in order to identify areas that could be suitable for future conservation efforts. In the U.S. there are several protected areas that are potentially suitable for M. walkerae, whereas in Mexico no protected areas exist within M. walkerae suitable habitat.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3547
Author(s):  
Rossana Escanilla-Minchel ◽  
Hernán Alcayaga ◽  
Marco Soto-Alvarez ◽  
Christophe Kinnard ◽  
Roberto Urrutia

Excluding Antarctica and Greenland, 3.8% of the world’s glacier area is concentrated in Chile. The country has been strongly affected by the mega drought, which affects the south-central area and has produced an increase in dependence on water resources from snow and glacier melting in dry periods. Recent climate change has led to an elevation of the zero-degree isotherm, a decrease in solid-state precipitation amounts and an accelerated loss of glacier and snow storage in the Chilean Andes. This situation calls for a better understanding of future water discharge in Andean headwater catchments in order to improve water resources management in glacier-fed populated areas. The present study uses hydrological modeling to characterize the hydrological processes occurring in a glacio-nival watershed of the central Andes and to examine the impact of different climate change scenarios on discharge. The study site is the upper sub-watershed of the Tinguiririca River (area: 141 km2), of which nearly 20% is covered by Universidad Glacier. The semi-distributed Snowmelt Runoff Model + Glacier (SRM+G) was forced with local meteorological data to simulate catchment runoff. The model was calibrated on even years and validated on odd years during the 2008–2014 period and found to correctly reproduce daily runoff. The model was then forced with downscaled ensemble projected precipitation and temperature series under the RCP 4.5 and RCP 8.5 scenarios, and the glacier adjusted using a volume-area scaling relationship. The results obtained for 2050 indicate a decrease in mean annual discharge (MAD) of 18.1% for the lowest emission scenario and 43.3% for the most pessimistic emission scenario, while for 2100 the MAD decreases by 31.4 and 54.2%, respectively, for each emission scenario. Results show that decreasing precipitation lead to reduced rainfall and snowmelt contributions to discharge. Glacier melt thus partly buffers the drying climate trend, but our results show that the peak water occurs near 2040, after which glacier depletion leads to reducing discharge, threatening the long-term water resource availability in this region.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 705 ◽  
Author(s):  
Ying Guo ◽  
Jing Guo ◽  
Xin Shen ◽  
Guibin Wang ◽  
Tongli Wang

Ginkgo (Ginkgo biloba L.) is not only considered a ‘living fossil’, but also has important ecological, economic, and medicinal values. However, the impact of climate change on the performance and distribution of this plant is an increasing concern. In this study, we developed a bioclimatic model based on data about the occurrence of ginkgo from 277 locations, and validated model predictions using a wide-ranging field test (12 test sites, located at the areas from 22.49° N to 39.32° N, and 81.11° E to 123.53° E). We found that the degree-days below zero were the most important climate variable determining ginkgo distribution. Based on the model predictions, we classified the habitat suitability for ginkgo into four categories (high, medium, low, and unsuitable), accounting for 9.29%, 6.09%, 8.46%, and 76.16% of China’s land area, respectively. The ANOVA results of the validation test showed significant differences in observed leaf-traits among the four habitat types (p < 0.05), and importantly the rankings of the leaf traits were consistent with our classification of the habitat suitability, suggesting the effectiveness of our classification in terms of biological and economic significance. In addition, we projected that suitable (high and medium) habitats for ginkgo would shrink and shift northward under both the RCP4.5 and RCP8.5 climate change scenarios for three future periods (the 2020s, 2050s, and 2080s). However, the area of low-suitable habitat would increase, resulting in a slight decrease in unsuitable habitats. Our findings contribute to a better understanding of climate change impact on this plant and provide a scientific basis for developing adaptive strategies for future climate.


2014 ◽  
Vol 9 (4) ◽  
pp. 432-442 ◽  
Author(s):  
Nobuhiko Sawai ◽  
◽  
Kenichiro Kobayashi ◽  
Apip ◽  
Kaoru Takara ◽  
...  

This paper assesses the impact of climate change in the Black Volta River by using data output from the atmospheric general circulation model with a 20-km resolution (AGCM20) through the Japanese Meteorological Agency (JMA) and the Meteorological Research Institute (MRI). The Black Volta, which flows mainly in Burkina Faso and Ghana in West Africa, is a major tributary of the Volta River. The basin covers 142,056 km2 and has a semi-arid tropical climate. Before applying AGCM20 output to a rainfall–runoff model, the performance of the AGCM20 rainfall data is investigated by comparing it with the observed rainfall in the Black Volta Basin. To assess the possible impact of rainfall change on river flow, a kinematic wave model, which takes into consideration saturated and unsaturated subsurface soil zones, was performed. The rainfall analysis shows that, the correlation coefficient of the monthly rainfall between the observed rainfall and AGCM20 for the present climate (1979–2004) is 0.977. In addition, the analysis shows that AGCM20 overestimates precipitation during the rainy season and underestimates the dry season for the present climate. The analysis of the AGCM20 output shows the precipitation pattern change in the future (2075–2099). In the future, precipitation is expected to increase by 3%, whereas evaporation and transpiration are expected to increase by 5% and by 8%, respectively. Also, daily maximum rainfall is expected to be 20 mm, or 60%, higher. Thus, the future climate in this region is expected to be more severe. The rainfall–runoff simulation is successfully calibrated at the Bamboi discharge gauging station in the Black Volta fromJune 2000 to December 2000 with 0.72 of the Nash–Sutcliffe model efficiency index. The model is applied with AGCM20 outputs for the present climate (1979–2004) and future climate (2075–2099). The results indicate that future discharge will decrease from January to July at the rate of the maximum of 50% and increase fromAugust to December at the rate of the maximumof 20% in the future. Therefore, comprehensive planning for both floods and droughts are urgently needed in this region.


Sign in / Sign up

Export Citation Format

Share Document