scholarly journals Numerical And Experimental Analysis of Temperature Distribution And Melt Flow In Fiber Laser Welding of Inconel 625

Author(s):  
Iskander Tlili ◽  
Dumitru Baleanu ◽  
S. Mohammad Sajadi ◽  
Ferial Ghaemi

Abstract In these days, laser is a useful and valuable tool. Low input heat, speed, accuracy, and high controllability of laser welding have led to widespread use in various industries. Nickel-based superalloys are creep-resistant materials used in high-temperature conditions. Also, these alloys have high strength, fatigue, and suitable corrosion resistance. Inconel 625 is a material that is strengthened by a complex deposition mechanism. Therefore, the parameters related to laser welding affect the microstructure and mechanical properties. Therefore, in this study, the effect of fiber laser welding parameters on temperature distribution, weld bead dimensions, melt flow velocity, and microstructure was investigated by finite volume and experimental methods. In order to detect the temperature history during continuous laser welding, two thermocouples were considered at a distance of 2 mm from the welding line. The heat energy from the laser beam was modeled as surface and volumetric heat flux. The results of numerical simulation showed that Marangoni stress and buoyancy force are the most important factors in the formation of the flow of liquid metal. Enhancing the laser power to 400 W led to the expansion of the width of the molten pool by 1.44 mm, which was in good agreement with the experimental results. Experimental results also showed that increasing the temperature from 500 °C around the molten pond leads to the formation of a coarse-grained austenitic structure.

2013 ◽  
Vol 40 (11) ◽  
pp. 1103004
Author(s):  
赵琳 Zhao Lin ◽  
塚本进 Tsukamoto Susumu ◽  
荒金吾郎 Arakane Goro ◽  
张岩 Zhang Yan ◽  
田志凌 Tian Zhiling

Author(s):  
Sohini Chowdhury ◽  
Yadaiah Nirsanametla ◽  
Muralidhar Manapuram

This work focuses on examining the influence of welding parameters under different welding atmospheres and evaluation of keyhole profile during fiber laser welding operation. The experiments are carried out in two different welding atmospheres, namely self-protected atmosphere of Ar gas and open atmospheric conditions. The effect of these two atmospheric conditions on weld profile formation and dimensions, and microstructural evolution for SS 316 plates are examined. In addition, the keyhole profile is evaluated by using a semi-analytical mathematical model, a point-by-point energy balance determination at the keyhole wall, which is mapped with experimentally measured weld macrographs for similar welding conditions. It has been determined that the weld quality is profound in the case of a self-protected atmosphere with respect to aspect ratio, weld defects, and microstructural characterization. Moreover, better weld bead profile and cleaner weld seam on the upper surface is determined in samples welded in a self-protected atmosphere.


Sign in / Sign up

Export Citation Format

Share Document