scholarly journals Response of Human Glioblastoma Cells to Hyperthermia: Cellular Apoptosis and Molecular Events

Author(s):  
Mansoureh Hashemi ◽  
Aida abbasiazam ◽  
Saeed Oraee-Yazdani ◽  
Janice Lenzer

Abstract Glioblastoma multiforme (GBM) also categorized as a grade IV astrocytoma, is an aggressive brain tumor which invades the surrounding brain tissue. Hyperthermia is known to be effective for chemo-radiotherapy to sensitize cancer cells to radiation as a treatment option for patients with GBM. The current study was performed in order to assess and compare the properties of the astrocyte and cancer stem cells isolated from glioblastoma exposed to hyperthermia. Astrocytes and cancer stem cells were isolated from human glioblastoma tissue. Glioblastoma tissues were digested and cultured in culture medium supplemented with B27, basic fibroblast growth factor and epidermal growth factor. The morphology and specific markers were evaluated in astrocyte and cancer stem cell of human glioblastoma through immunocytochemistry and quantitative real-time RT-PCR. The multipotentiality of cancer stem cells was presented using differentiation potential into neurons, oligodendrocytes, and astrocytes. For hyperthermia, cells were exposed to temperatures at 42‑46˚C for 1h using a water bath. Cell survival rate by MTT assay and apoptosis using quantitative real-time RT-PCR and western blot were evaluated. Results demonstrated that there were two morphology types in cell culture including epithelioid morphology and fibroblastic morphology. Astrocytes were confirmed via expression of the Glial fibrillary acidic protein (GFAP) protein; whereas, cancer stem cells (CSCs) were round and floating in the culture medium. Immunocytochemical staining indicated that nestin, CD133 and SRY-box 2 (SOX2) antigens were positively expressed in primary neurospheres. Results indicated that cancer stem cells of glioblastoma are multipotent and are able to differentiate into neurons, oligodendrocytes, and astrocytes. The current study obtained evidence via apoptosis evaluation that CSCs are resistant to hyperthermia when compared to astrocytes isolated from glioblastoma. Furthermore, hyperthermia was demonstrated to decrease cell resistance, which may be effective for chemo-radiotherapy to sensitize cancer cells to radiation. Taken together, CSCs of glioblastoma could be used as a powerful tool for evaluating the tumorigenesis process in the brain and developing novel therapies for treatment of GBM.

2014 ◽  
Vol 224 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Yoshimitsu Kuwabara ◽  
Akira Katayama ◽  
Ryoko Tomiyama ◽  
Hu Piao ◽  
Sachiko Kurihara ◽  
...  

Osteopontin (OPN), a secreted glycoprotein, has multiple physiological functions. This study investigated the regulation and roles of OPN in the mouse ovary during the periovulatory stages. Immature female mice were treated with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) to simulate follicle maturation and ovulation.In situhybridization and real-time RT-PCR were performed to assess expression ofOpnin the periovulatory ovary. Granulosa cells (GCs) from PMSG-primed immature mice were cultured with or without hCG in the presence or absence of OPN, and effects on expression ofOpn, progesterone synthesis, and vascular endothelial growth factor (VEGF) signaling were assessed by real-time RT-PCR, ELISA, and western blotting analysis.Opntranscripts were significantly upregulated 3 h after hCG treatment, followed by a peak at 16 h, and the transcripts localized to GCs. Incubation with hCG significantly increased quantities ofOpntranscripts in GCs and OPN levels in the culture medium at 12 and 24 h. Furthermore, OPN treatment caused a significant increase in the levels ofStarprotein, P 450 cholesterol side-chain cleavage enzyme (p450scc), 3-beta-hydroxysteroid dehydrogenase (Hsd3b), and progesterone in the culture medium. OPN treatment promotedVegfexpression in GCs, which was significantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor. In addition, OPN treatment stimulated phosphorylation of AKT, a downstream PI3K signaling molecule. In conclusion, expression ofOpnwas upregulated in mouse ovarian GCs in response to a gonadotropin surge through epidermal growth factor receptor signaling, which enhances progesterone synthesis andVegfexpression during the early-luteal phase.


Stem Cells ◽  
2013 ◽  
Vol 31 (3) ◽  
pp. 433-446 ◽  
Author(s):  
Haixia Zhang ◽  
Haotong Wu ◽  
Junheng Zheng ◽  
Pei Yu ◽  
Lixiao Xu ◽  
...  

2018 ◽  
Vol 23 (43) ◽  
pp. 6563-6572
Author(s):  
Ana Filipa Cruz ◽  
Nuno Andre Fonseca ◽  
Vera Moura ◽  
Sergio Simoes ◽  
Joao Nuno Moreira

2014 ◽  
Vol 9 (2) ◽  
pp. 112-116 ◽  
Author(s):  
Maria Toloudi ◽  
Eleni Ioannou ◽  
Marina Chatziioannou ◽  
Panagiotis Apostolou ◽  
Christos Kiritsis ◽  
...  

Author(s):  
Milad Ashrafizadeh ◽  
Shahram Taeb ◽  
Hamed Haghi-Aminjan ◽  
Shima Afrashi ◽  
Kave Moloudi ◽  
...  

: Resistance of cancer cells to therapy is a challenge for achieving an appropriate therapeutic outcome. Cancer (stem) cells possess several mechanisms for increasing their survival following exposure to toxic agents such as chemotherapy drugs, radiation as well as immunotherapy. Evidences show that apoptosis plays a key role in response of cancer (stem) cells and their multi drug resistance. Modulation of both intrinsic and extrinsic pathways of apoptosis can increase efficiency of tumor response and amplify the therapeutic effect of radiotherapy, chemotherapy, targeted therapy and also immunotherapy. To date, several agents as adjuvant have been proposed to overcome resistance of cancer cells to apoptosis. Natural products are interesting because of low toxicity on normal tissues. Resveratrol is a natural herbal agent that has shown interesting anti-cancer properties. It has been shown to kill cancer cells selectively, while protecting normal cells. Resveratrol can augment reduction/oxidation (redox) reactions, thus increases the production of ceramide and the expression of apoptosis receptors such as Fas ligand (FasL). Resveratrol also triggers some pathways which induce mitochondrial pathway of apoptosis. On the other hand, resveratrol has an inhibitory effect on anti-apoptotic mediators such as nuclear factor κ B (NFκB), cyclooxygenase-2 (COX-2), phosphatidylinositol 3–kinase (PI3K) and mTOR. In this review, we explain the modulatory effects of resveratrol on apoptosis, which can augment the therapeutic efficiency of anti-cancer drugs or radiotherapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Manal Nabil Hagar ◽  
Farinawati Yazid ◽  
Nur Atmaliya Luchman ◽  
Shahrul Hisham Zainal Ariffin ◽  
Rohaya Megat Abdul Wahab

Abstract Background Mesenchymal stem cells isolated from the dental pulp of primary and permanent teeth can be differentiated into different cell types including osteoblasts. This study was conducted to compare the morphology and osteogenic potential of stem cells from exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC) in granular hydroxyapatite scaffold (gHA). Preosteoblast cells (MC3T3-E1) were used as a control group. Methodology The expression of stemness markers for DPSC and SHED was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR). Alkaline phosphatase assay was used to compare the osteoblastic differentiation of these cells (2D culture). Then, cells were seeded on the scaffold and incubated for 21 days. Morphology assessment using field emission scanning electron microscopy (FESEM) was done while osteogenic differentiation was detected using ALP assay (3D culture). Results The morphology of cells was mononucleated, fibroblast-like shaped cells with extended cytoplasmic projection. In RT-PCR study, DPSC and SHED expressed GAPDH, CD73, CD105, and CD146 while negatively expressed CD11b, CD34 and CD45. FESEM results showed that by day 21, dental stem cells have a round like morphology which is the morphology of osteoblast as compared to day 7. The osteogenic potential using ALP assay was significantly increased (p < 0.01) in SHED as compared to DPSC and MC3T3-E1 in 2D and 3D cultures. Conclusion gHA scaffold is an optimal scaffold as it induced osteogenesis in vitro. Besides, SHED had the highest osteogenic potential making them a preferred candidate for tissue engineering in comparison with DPSC.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1833
Author(s):  
Tsai-Tsen Liao ◽  
Wei-Chung Cheng ◽  
Chih-Yung Yang ◽  
Yin-Quan Chen ◽  
Shu-Han Su ◽  
...  

Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial–mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.


Sign in / Sign up

Export Citation Format

Share Document