scholarly journals Effects of Yellow, Green, and Different Blue Spectra on Growth of Potato Plantlets In Vitro

HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 541-546 ◽  
Author(s):  
Ruining Li ◽  
Wenwen Huang ◽  
Xiaoxiao Wang ◽  
Xiaoying Liu ◽  
Zhigang Xu

The objectives of this study were to determine the effects of yellow light (Y), green light (G), and two blue lights (B) at different wavelengths in conjunction with red light (R) on the growth and morphogenesis of potato plantlets in vitro. Randomized nodal explants were cut into 1.0–1.5 cm pieces and were grown under five different light conditions: fluorescent white light (FL); the combined spectra of R, Y, and B at 445 nm (R630B445Y); the combined spectra of R, G, and B at 445 nm (R630B445G); the combined spectra of R, Y, and B at 465 nm (R630B465Y); and the combined spectra of R, G, and B at 465 nm (R630B465G). Morphogenesis and physiological parameters were investigated. The results showed that R630B445Y and R630B465Y increased the fresh weight (FW), dry weight (DW), stem diameter, blade number, leaf area, specific leaf weight (SLW), and the health index of potato plantlets in vitro; root activity increased significantly; and soluble sugar, soluble protein, and starch also increased. The addition of Y to the combined spectra of R and B contributed to the growth, development, and morphogenesis more than the combined spectra of R and B with G, and B at 445 nm was more effective at promoting plant growth than was B at 465 nm.

Author(s):  
Christos Latsos ◽  
Jasper van Houcke ◽  
Lander Blommaert ◽  
Gabrielle P. Verbeeke ◽  
Jacco Kromkamp ◽  
...  

AbstractThe cryptophyte Rhodomonas sp. is a potential feed source for aquaculture live feed and resource for phycoerythrin (PE) production. This research investigates the influence of light, both quality and quantity, on the biomass productivity, composition and growth rate of Rhodomonas sp. The incident light intensity used in the experiments was 50 μmolphotons m−2 s−1, irrespective of the colour of the light, and cultivation took place in lab-scale flat-panel photobioreactors in turbidostat mode. The highest productivity in volumetric biomass (0.20 gdry weight L−1 day−1), measured under continuous illumination, was observed under green light conditions. Blue and red light illumination resulted in lower productivities, 0.11 gdry weight L−1 day−1 and 0.02 g L−1 day−1 respectively. The differences in production are ascribed to increased absorption of green and blue wavelength by phycoerythrin, chlorophyll and carotenoids, causing higher photosynthetically usable radiation (PUR) from equal photosynthetically absorbed irradiance (PAR). Moreover, phycoerythrin concentration (281.16 mg gDW−1) was stimulated under red light illumination. Because photosystem II (PSII) absorbs poorly red light, the algae had to induce more pigments in order to negate the lower absorption per unit pigment of the incident available photons. The results of this study indicate that green light can be used in the initial growth of Rhodomonas sp. to produce more biomass and, at a later stage, red light could be implemented to stimulate the synthesis of PE. Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated a significant difference between the cells under different light quality, with higher contents of proteins for samples of Rhodomonas sp. cultivated under green light conditions. In comparison, higher carbohydrate contents were observed for cells that were grown under red and blue light.


HortScience ◽  
2004 ◽  
Vol 39 (2) ◽  
pp. 380-382 ◽  
Author(s):  
Ruey-Chi Jao ◽  
Wei Fang

Effects of concurrent vs. alternating blue and red light using light-emitting diodes (LEDs) on the photomixotrophic growth of potato plantlets in vitro were investigated. All seven treatments had the same 5.53 mol·m-2 daily light integral (DLI), photoperiod (16-hour day/8-hour night) and similar proportion of red light (45%) and blue light (55%). Results showed that the fresh/dry weight accumulation of potato plantlets in vitro under the concurrent blue and red light was superior than that under the alternating blue and red light, indicating that the simultaneous coexistence of blue and red light are necessary for optimum plantlet growth. Low PPF with long duration was better than high PPF with short duration under same DLI. Within the concurrent blue and red light treatments, when the duration of blue light was shorter than that of red light, timing of the blue light affected the growth of potato plantlets in vitro. Providing blue and red light together at the beginning of the photoperiod resulted in optimal growth, however plantlets illuminated with alternately blue and red light had significantly less fresh/dry weight accumulation.


Author(s):  
Kreuschitz Viktor ◽  
Nehl Hanns Peter

This chapter focuses on the concepts of subsidy control under World Trade Organization (WTO), prohibiting certain types of subsidies that might have a harmful effect on economic activity in other WTO members. A major innovation of the Agreement on Subsidies and Countervailing Measures (SCM Agreement) was the classification of subsidies into three categories, often referred to as ‘red light’, ‘yellow light’, and ‘green light’. ‘Red light’ subsidies are prohibited per se, with no need to actually prove any adverse effect. The ‘yellow light’ or ‘actionable subsidies’ are not prohibited, but may be challenged only if they cause ‘adverse effects’. Under the ‘green light’ category, certain selected types of subsidies were non-actionable even if they were specific and caused one of the harms listed in Articles 5 and 6 of the SCM Agreement.


2013 ◽  
Vol 48 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Eleonora Gabryszewska ◽  
Ryszard Rudnicki

The effect of white, blue, green, red and UV + white light on the growth and development of shoots and roots of Gerbera jamesonii cv. Queen Rebecca in relation to the presence of kinetin or IAA were investigated. The highest number of axillary shoots was obtained in red and green light on the medium with 5 mg l<sup>-1</sup> kinetin. Also, green and red light markedly increased the number of leaves developed on the plantlets on the medium supplemented with kinetin. Light quality and IAA added to culture medium variously affected the development of root system: roots were regenerated under all light treatments, higher root number was recorded under red light when 5 mg l<sup>-1</sup> IAA was added to the media, the shortest roots were found in red light on the medium supplemented with IAA. The greatest fresh weight of shoots was found under white light on the medium with kinetin. Red light markedly decreased shoot fresh weight on hormone-free medium. Blue and white light caused increase in fresh weight of roots.


2019 ◽  
Vol 7 (3) ◽  
Author(s):  
SUZANA OLIVEIRA SANTOS ◽  
Vivianne L. B. Souza

Photodynamic therapy (PDT) consists of the association of a photosensitizing agent with a light source in order to cause cellular necrosis. Methylene blue, toluidine blue and malachite green are photosensitizers derived from dyes that are widely accepted in medicine, as they have low toxicity and are low cost. PDT is an alternative treatment for cancer, with significant advantages over procedures such as surgery/chemotherapy. Our laboratory has studied the Fricke solution doped with photosensitizers in an approach to obtain a quality control for PDT. The Fricke solution was prepared with ammoniacal ferrous sulfate, sodium chloride and sulfuric acid in water. The solutions modified with photosensitizers were prepared by adding 0.1 g/100 mL of the dyes. A volume of 2.6 ml of the Fricke solution modified with photosensitizers were transferred to test tubes and irradiated. The irradiated solutions had their optical densities measured in a spectrophotometer. The samples were irradiated with LED (Light Emitting Diodes) in acrylic phantoms. The FATA samples irradiated with LED showed the sensitivity of the dosimeters to red, blue, green and yellow light. A calibration curve with correlation coefficient of 0.9884 for the red light was obtained; 0.9752 for blue light; 0.9644 for the green light and 0.9768 for the yellow light. The fact that a sensitivity of the dosimeters to the LED has been occurred indicates that the PDT could be realized with LED, with lower costs than with laser. This work suggested that FATA dosimeters can be used for quality control of PDT.


2017 ◽  
Vol 23 (6) ◽  
pp. 725-726 ◽  
Author(s):  
Thoetchai Bee Peeraphatdit ◽  
Patrick S. Kamath ◽  
Vijay H. Shah

2012 ◽  
Vol 64 (3) ◽  
pp. 13-18 ◽  
Author(s):  
Marek Jerzy ◽  
Piotr Zakrzewski ◽  
Anita Schroeter-Zakrzewska

The pot cultivar of <i>Chrysanthemum</i> × <i>grandiflorum</i> 'Leticia Time Yellow' was cultivated and stored in a growth room under fluorescent light of white, blue, green, yellow and red colour. Quantum irradiance was 30 μmol · m<sup>-2</sup> × s<sup>-1</sup>. The colour of light exerted a significant influence on the opening of closed inflorescence buds and on post-harvest longevity of pot chrysanthemums grown earlier in an unheated plastic tunnel. Under florescent lamps emitting blue light at a wavelength of 400-580 nm, inflorescence buds opened and coloured the earliest. The number of developed flower heads was the greatest under blue and white light. Flower heads developing in blue light were bigger than flower heads developing in white and green light. In red light at a wavelength of 600-700 nm, plants flowered latest and they produced the smallest flower heads. Post-harvest longevity was preserved longest in chrysanthemums kept under blue, white and green light. In red and yellow light, the flowers were overblown earliest.


Sign in / Sign up

Export Citation Format

Share Document