scholarly journals Effect of Deficit Irrigation on Root Growth, Soil Water Depletion, and Water Use Efficiency of Cucumber

HortScience ◽  
2021 ◽  
pp. 1-9
Author(s):  
Ved Parkash ◽  
Sukhbir Singh ◽  
Manpreet Singh ◽  
Sanjit K. Deb ◽  
Glen L. Ritchie ◽  
...  

Water scarcity is increasing in the world, which is limiting crop production, especially in water-limited areas such as Southern High Plains of the United States. There is a need to adopt the irrigation management practices that can help to conserve water and sustain crop production in such water-limited areas. A 2-year field study was conducted during the summers of 2019 and 2020 to evaluate the effect of deficit irrigation levels and cultivars on root distribution pattern, soil water depletion, and water use efficiency (WUE) of cucumber (Cucumis sativus). The experiment was conducted in a split-plot design with four irrigation levels [100%, 80%, 60%, and 40% crop evapotranspiration (ETc)] as main plot factor and two cultivars (Poinsett 76 and Marketmore 76) as subplot factor with three replications. Results showed that root length density (RLD) was unaffected by the irrigation levels in 2019. In 2020, the RLD was comparable between 100% and 80% ETc, and it was significantly higher in 100% ETc than both 60% Eand 40% ETc. Root surface area density (RSAD) was not significantly different between 100% and 80% ETc, and it was significantly lower in both 60% and 40% ETc than 100% ETc in both years. Soil water depletion was the highest in 40% ETc followed by 60% and 80% ETc, and it was least in 100% ETc in both years. Evapotranspiration (ET) was the highest in 100% ETc followed by 80%, 60%, and 40% ETc. The WUE was not statistically different among the irrigation treatments. However, numerically, WUE was observed in the following order: 80% ETc > 100% ETc > 60% ETc > 40% ETc. The RLD, RSAD, soil water depletion, and ET were not significantly different between ‘Poinsett 76’ and ‘Marketmore 76’. However, fruit yield was significantly higher in ‘Poinsett 76’ than ‘Marketmore 76’, which resulted in higher WUE in Poinsett 76. It can be concluded that 80% ETc and Poinsett 76 cultivar can be adopted for higher crop water productivity and successful cucumber production in SHP.

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1315
Author(s):  
Xun Bo Zhou ◽  
Guo Yun Wang ◽  
Li Yang ◽  
Hai Yan Wu

Low water availability coupled with poor planting method has posed a great challenge to winter wheat (Triticum aestivum L.) productivity. To improve productivity and water use efficiency (WUE) under deficit irrigation, an effective water-saving technology that is characterized by three planting modes has been developed (uniform with 30-cm row spacing (U), double-double row spacing of 5 cm (DD), and furrow-ridge row spacing of alternated 20 cm and 40 cm (F)) combined with three irrigation regimes (50 mm water each at growth stage 34 (GS34) and GS48 (W1), and 100 mm water at GS48 (W2), or 100 mm each water at GS34 and GS48 (W3)). Results showed that DD increased yield by 9.7% and WUE by 12.6% due to higher soil water status and less soil water depletion and evapotranspiration compared with U. Although the soil water status, soil water depletion, evapotranspiration, and yield increased with increasing irrigation amount, more soil water depletion and evapotranspiration resulted in low WUE. The deficit irrigation was beneficial for improving WUE as W1 had significantly increased yield by 5.4% and WUE by 7.1% compared with W2. Yield and evapotranspiration showed a quadratic dynamic equation indicating that yield increased with increasing evapotranspiration. Considering WUE and relatively higher yield under deficit water, W1 combined with DD is suggested to be a good management strategy to be applied in winter wheat of water-scarce regions.


2018 ◽  
Vol 36 (2) ◽  
pp. 73-81
Author(s):  
Jeff L. Sibley ◽  
Xiaomei Yang ◽  
Wenliang Lu ◽  
D. Joseph Eakes ◽  
Charles H. Gilliam ◽  
...  

Abstract Production of quality greenhouse and nursery crops is dependent on high quality and quantities of water. At present, in some regions, insufficient water supply is a growing concern. This study was conducted to evaluate growth of New Guinea impatiens (Impatiens hawkerii 'Celebrate Salmon'), when watered with a polyoxyethylenesorbitan monolaurate (C58H114O26) solution commercially known as Tween 20, at differing irrigation levels compared with a conventional water regimen without the surfactant, and also to determine how Tween 20 would affect photosynthesis and transpiration. The treatment design was a 3 by 6 complete factorial design plus a control. The two factors were irrigation and Tween 20. Irrigation levels of 20%, 40%, or 60% of the full crop evapotranspiration (ET) requirements were used in combination with Tween 20 concentrations of either 0, 25, 50, 75, 100, or 125 mg·L−1 (0, 0.003338, 0.00668, 0.0100145, 0.01335, or 0.01669 oz per gallon). The control group was watered with tap water to container capacity with about 30% leachate. Evapotranspiration was determined as the difference of the applied water amount minus the leachate of the control. Plants irrigated with Tween 20 from 25 to 125 mg·L−1 (0.003338 to 0.01669 oz per gallon) at the 40% or 60% irrigation level had the same height and growth index as plants in the control after three months of growth. Plant fresh and dry weights were not different between the control and the treatments of Tween 20 from 50 to 125 mg·L−1 (0.00668 to 0.01669 oz per gallon) at the 60% irrigation level or the treatment of Tween 20 at 100 mg·L−1 (0.01335 oz per gallon) at the 40% irrigation level. Tween 20 had no effect on net photosynthetic rate. Tween 20 decreased the amount of transpired water of New Guinea impatiens 'Celebrate Salmon'. When the Tween 20 concentration increased from 0 to 100 mg·L−1 (0 to 0.01335 oz per gallon) at the 60% irrigation level, the transpiration rate and stomatal conductance decreased markedly by 43% and 47%, respectively, and water use efficiency was increased by 47%. Results from this study suggest that Tween 20 is able to increase plant water use efficiency through regulation of stomatal conductance or transpiration under deficit irrigation. Index words: irrigation management, chemigation, source-sink physiology, deficit irrigation, wetting agent, Tween 20, adjuvant. Species used in this study: New Guinea Impatiens (Impatiens hawkerii W. Bull. 'Celebrate Salmon'). Chemicals used in this study: Tween 20 (polyoxyethylenesorbitan monolaurate). (aka: polysorbate 20, polyoxyethylene (20) sorbitan monolaurate)


2021 ◽  
Vol 5 (5) ◽  
pp. 252-263
Author(s):  
Muhammad Rizwan Shoukat ◽  
Muhammad Shafeeque ◽  
Abid Sarwar ◽  
Kashif Mehmood ◽  
Muhammad Jehanzeb Masud Cheema

Investigating the effects of optimized fertilizer and irrigation levels on water use efficiency and productivity of wheat crop at small farms is of great importance for precise and sustainable agriculture in Pakistan's irrigated areas. However, traditional farmer practices for wheat production are inefficient and unsustainable. This study aimed to investigate the effects of deficit irrigation and nitrophos fertilizer levels on bread wheat grain yield, yield parameters, nutrient use and water use efficiencies in bed planting wheat compared to traditional farmers' practices in the flat sowing method. The two-year field experiment followed a randomized complete block design of three replications, taking three irrigation treatments according to the requirement of crop estimated by CROPWAT model (100% of ETC), deficit irrigation (80% of ETC), and deficit irrigation 60% of ETC and three nitrophos fertilizer treatments (farmer practice 120 kg N ha-1, optimized 96 kg N ha-1, and 84 kg N ha-1) at different growth stages. Crop ETC was calculated using the FAO CROPWAT 8.0 model from the last ten years (2003-2013) average climate data of the experimental station. The traditional farmer practice treatment was included as a control treatment with a flat sowing method compared with other sown-by-bed planter treatments. All treatments were provided with an equivalent amount of fertilizer at the basal dose. Before the first and second irrigation, top-dressing fertilizer was used in traditional farmers' treatment at the third leaf and tillering stages. It was applied in optimized treatments before the first, second, and third irrigation at the third leaf, tillering and shooting stages, respectively, under the bed planting method. The deficit level of irrigation (80% of ETc) and optimized fertilizer (96 kg N ha-1) showed the optimum grain yield, nutrient use, and water use efficiencies, with 20% reduced irrigation water and fertilizer levels than traditional farming practice. The results suggest that bread wheat should be irrigated with 80% of ETC and applied 96 kg N ha-1 nitrophos fertilizer at the third leaf, tillering, and shooting stages to achieve higher grain yield and water and nutrient use efficiencies under bed planting.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1184
Author(s):  
Zhaoyang Li ◽  
Rui Zong ◽  
Tianyu Wang ◽  
Zhenhua Wang ◽  
Jinzhu Zhang

Jujube tree yields in dryland saline soils are restricted by water shortages and soil salinity. Converting traditional flood irrigation to drip irrigation would solve water deficit and salt stress. The root distribution reacts primarily to the availability of water and nutrients. However, there is little information about the response of jujube roots to the change from flood irrigation to drip irrigation. In this context, a two–year experiment was carried out to reveal the effects of the change from long–term flood irrigation to drip irrigation on soil water, root distribution, fruit yield, and water use efficiency (WUE) of jujube trees. In this study, drip irrigation amounts were designed with three levels, i.e., 880 mm (W1), 660 mm (W2), 440 mm (W3), and the flood irrigation of 1100 mm was designed as the control (CK). The results showed that replacing flood irrigation with drip irrigation significantly altered soil water distribution and increased soil moisture in the topsoil (0–40 cm). In the drip irrigation treatments with high levels, soil water storage in the 0–60 cm soil layer at the flowering and fruit setting, and fruit swelling stages of jujube trees increased significantly compared with the flood irrigation. After two consecutive years of drip irrigation, the treatments with higher irrigation levels increased root length density (RLD) in 0–60 cm soil depth but decreased that in the 60–100 cm depth. In the horizontal direction, higher irrigation levels increased RLD in the distance of 0–50 cm, while reducing RLD in the distance of 50–100 cm. However, the opposite conclusion was obtained in W3 treatment. Additionally, in the second year of drip irrigation, W2 treatment (660 mm) significantly improved yield and WUE, with an increasing of 7.6% for yield and 60.3% for WUE compared to the flood irrigation. In summary, converting flood irrigation to drip irrigation is useful in regulating root distribution and improving WUE, which would be a promising method in jujube cultivation in arid regions.


2020 ◽  
Vol 12 (18) ◽  
pp. 7678
Author(s):  
Giorgio Baiamonte ◽  
Mario Minacapilli ◽  
Giuseppina Crescimanno

This paper aimed at investigating if the application of biochar (BC) to desert sand (DS) from the United Arab Emirates (UAE), characterized by a very poor soil-water retention (SWR) and by a very low value of the maximum water available for crops (AWmax), could positively affect soil water balance, by reducing the irrigation needs (VIRR) and improving the irrigation water use efficiency (IWUE) and the water use efficiency (WUE). The analysis was performed for three crops, i.e., wheat (Triticum aestivum), sorghum (Sorghum vulgare) and tomato (Lycopersicon esculentum). BC was applied to the DS at different fractions, fBC (fBC = 0, 0.091, 0.23 and 0.33). Drip irrigation was adopted as a highly efficient water saving method, which is particularly relevant in arid, water-scarce countries. Soil water balance and irrigation scheduling were simulated by application of the AQUACROP model, using as input the SWR measured without and with BC addition. The effect of BC was investigated under either a no-water stress (NWS) condition for the crops or deficit irrigation (DI). The results showed that the application of BC made it possible to reduce the predicted VIRR and to increase the IWUE under the NWS scenario, especially for wheat and sorghum, with less evident benefits for tomato. When a deficit irrigation (DI) was considered, even at the lowest considered fBC (0.091), BC counterbalanced the lower VIRR provided under DI, thus mitigating the yield reduction due to water stress, and improved the WUE. The influence of BC was more pronounced in wheat and tomato than in sorghum. The results evidenced that the application of BC could be a potential strategy for saving irrigation water and/or reducing the effects of drought stress in desert sand. This means that biochar could be used a management option to promote local production and reduce the dependency on food import, not only in the UAE, but also in other countries with extremely arid climatic conditions and large extensions of sandy soils similar to the considered DS.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 808
Author(s):  
Hanamant M. Halli ◽  
Sanganabasappa Angadi ◽  
Prabhu Govindasamy ◽  
Raghavendra Madar ◽  
Manjanagouda S. Sannagoudar ◽  
...  

The aim of this study was to explore the effect of sowing methods and deficit irrigation on weed dynamics, yield and water-use efficiency (WUE) of the maize–cowpea system during the summer and monsoon seasons, respectively. The field experiment was carried out for two years (2015 and 2016) using a split design with three replicates under irrigated (maize) and rainfed (cowpea) conditions on vertisols of a semi-arid region. Treatments included three sowing methods [i.e., broad bed and furrow (BBF), corrugated furrow (CF) and ridges and furrow (RF)] and four irrigation levels [i.e., irrigation once in 10 days (I10D), irrigation at 40% (I40), at 50% (I50) and at 60% (I60) depletion]. The results indicated that, regardless of weed flora (monocots, dicots and sedges), the RF method produced higher weed density (2.09–2.98 No. m−2) compared to CF (2.00–2.80 No. m−2) and BBF (1.85–2.64 No. m−2) in maize at 30 and 60 days after sowing (DAS). The RF method with irrigation at I40 and I50 recorded significantly higher weed density, followed by the CF and BBF method. A similar trend was also observed with dry weight of weeds (monocot; 24.19%, dicot; 25.52%, and sedges; 29.80%) in maize at 30 and 60 DAS. Higher weed density and dry weight of weeds in the RF method with I40 was due to higher soil moisture availability and higher nutrient uptake due to larger lateral wetting of the soil and greater water use (29.27%). However, the BBF method favoured the growth of weeds (9.33–16.60%) in cowpea at 55 DAS and coped under rain-fed situation over CF and RF. The CF with moderate depletion (I50) method produced significantly higher maize equivalent yield (MEY) of cowpea (10,000 kg ha−1) with considerable reduction in the total water usage (19.33%). Therefore, under a water scarcity situation, growers can practice CF and I50 for higher yield and WUE of maize–cowpea sequence cropping.


Sign in / Sign up

Export Citation Format

Share Document