scholarly journals Reduced Irrigation during Orchard Establishment Conserves Water and Maintains Yield for Three Cider Apple Cultivars

HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 118-125
Author(s):  
Aidan Kendall ◽  
Carol A. Miles ◽  
Travis R. Alexander ◽  
Edward Scheenstra ◽  
Gabriel T. LaHue

Irrigation water productivity is a priority for sustainable orchard management as water resources become more limiting. This study evaluated reduced irrigation (RI) as a management strategy for cider apple (Malus domestica Borkh.) production in 2019 and 2020 in northwestern Washington, which has a Mediterranean climate and averages 14.1 cm of precipitation from June to September. RI was evaluated on three cider apple cultivars, Dabinett, Porter’s Perfection, and Golden Russet, in their third and fourth leaf. Stem water potential (stem ψ) was measured weekly throughout the growing season to monitor water stress and implement the RI treatment: irrigation would be applied when stem ψ values dropped below −1.5 MPa, a threshold indicative of moderate water stress in apples. Soil water potential was monitored throughout the season, vegetative growth was assessed by measuring shoot length and non-destructive imaging of the plant canopy using lateral photography, and yield, fruit quality, and juice quality were measured at harvest. Moderate water stress as indicated by stem ψ did not occur either year, thus irrigation was never applied to the RI treatment plots. There was a negative relationship between average stem ψ and both yield and air temperature (P < 0.0001 for each); as yield increased by 5.9 kg per tree or temperature increased by 3.3 °C, stem ψ decreased by 0.1 MPa. The juice quality attributes of the three cultivars in this study were similar to their historic measures at this site and there were no differences due to irrigation treatment, likely because trees did not reach the threshold to induce physiological stress. Both years, trees in the RI treatment did not differ from the control treatment in vegetative growth, fruit yield, juice yield, or any juice quality attribute, but weight per fruit decreased by 7 g, and fruit firmness (measured only in 2020) increased by 2 N. Results from this study indicate that fruit yield and quality in an establishing orchard can be maintained when irrigation is reduced relative to crop water requirements that are estimated from a calculated water balance or relative to conventional grower practices for this region. This finding highlights the benefits of using plant water status to schedule irrigation.

2008 ◽  
Vol 59 (3) ◽  
pp. 270 ◽  
Author(s):  
María Gómez-del-Campo ◽  
A. Leal ◽  
C. Pezuela

In 2005, four irrigation treatments were applied to a 3-year-old cv. Cornicabra orchard. In T1, wetted soil volume was maintained close to field capacity by irrigating when soil sensors indicated that soil water potential in the root zone had fallen to –0.03 MPa and 0.06 MPa from spring until 15 August and from 15 August until September, respectively. On those days, 8, 6, 4, and 2 h of irrigation was applied to T1, T2, T3, and T4, so that over the season they received 106, 81, 76 and 31 mm of irrigation, respectively. The high value for T3 was the result of a valve failure on 13 June. Measurements were maintained throughout the experimental period of relative extractable water (REW) to 1 m depth at the wetted volume (0.30 m from a drip emitter), shoot length, trunk diameter, stem water potential (Ψstem) and leaf conductance (gl). The irrigation treatment significantly affected REW (P < 0.10), Ψstem, gl and vegetative growth (P < 0.05). Ψstem, and trunk diameter were the least variable parameters and Ψstem and shoot growth were the most sensitive to water stress. Although T1 received 24% more water than T2, no significant differences were detected in vegetative growth. T2 should be considered the optimum irrigation value. The mean monthly Kc for T2 was 0.086. The failure of the valve in T3 simulated a wet spring followed by limited irrigation. Irrigation applied was similar to T2 but shoot growth stopped one month earlier and lower values of Ψstem and gl were observed after mid August. REW was highly related to vegetative growth, 66% of maximum being achieved at REW 0.53 and 50% at 0.45. gl was independant of plant or soil water status and did not determine vegetative growth. A strong relationship established Ψstem as a good indicator of vegetative growth and hence of water stress. Shoot growth was 66% of maximum at Ψstem –1.5 MPa and 50% at –1.8 MPa.


HortScience ◽  
1995 ◽  
Vol 30 (6) ◽  
pp. 1229-1232 ◽  
Author(s):  
Robert C. Ebel ◽  
Edward L. Proebsting ◽  
Robert G. Evans

A standard fruit growth curve, used commercially as an aid to hand thinning, was compared to periodic volume measurements of apple fruit (Malus domestica Borkh. `Delicious') subjected to early season regulated deficit irrigation (RDI) to determine when to end RDI, which is used to control vegetative growth and save water. RDI suppressed stem water potential, stomatal conductance, and fruit growth rate compared to the trickle- and furrow-irrigated controls, which wetted about one-half and the entire soil volume, respectively. Full irrigation was restored to RDI trees by trickle and microsprinklers, which wetted about one-half and the entire soil volume, respectively, after terminal buds set. Stem water potential, stomatal conductance, and fruit growth rate of RDI trees increased to that of the controls, except for RDI/trickle trees, which had 80% the stomatal conductance of the other treatments. Fruit weight at harvest was affected by an interaction of irrigation treatment and cropload. RDI trees had similar or less vegetative growth and similar or higher yield efficiency than the controls. We recommend ending RDI before fruit growth declines below the standard curve.


2021 ◽  
Author(s):  
Marta Rodríguez-Fernández ◽  
María Fandiño ◽  
Xesús Pablo González ◽  
Javier J. Cancela

&lt;p&gt;The estimation of the water status in the vineyard, is a very important factor, in which every day the winegrowers show more interest since it directly affects the quality and production in the vineyards. The situation generated by COVID-19 in viticulture, adds importance to tools that provide information of the hydric status of vineyard plants in a telematic way.&lt;/p&gt;&lt;p&gt;In the present study, the stem water potential in the 2018 and 2019 seasons, is analysed in a vineyard belonging to the Rias Baixas wine-growing area (Vilagarcia de Arousa, Spain), with 32 sampling points distributed throughout the plot, which allows the contrast and validation with the remote sensing methodology to estimate the water status of the vineyard using satellite images.&lt;/p&gt;&lt;p&gt;The satellite images have been downloaded from the Sentinel-2 satellite, on the closets available dates regarding the stem water potential measurements, carried out in the months of June to September, because this dates are considered the months in which vine plants have higher water requirements.&lt;/p&gt;&lt;p&gt;With satellite images, two spectral index related to the detection of water stress have been calculated: NDWI (Normalized Difference Water Index) and MSI (Moisture Stress Index). Stem water potential measurements, have allowed a linear regression with both index, to validate the use of these multispectral index to determine water stress in the vineyard.&lt;/p&gt;&lt;p&gt;Determination coefficients of r&lt;sup&gt;2&lt;/sup&gt;=0.62 and 0.67, have been obtained in July and August 2018 and 0.54 in June of 2019 for the NDWI index, as well as values of 0.53 and 0.63 in July 2018 and June 2019 respectively, when it has been analysed the MSI index.&lt;/p&gt;&lt;p&gt;Between both seasons, the difference observed, that implies slightly greater water stress in 2019, is reflected in the climate conditions during the summer months, with an average accumulated rainfall that doesn&amp;#8217;t exceed 46 mm of water. Although, the NDWI index has allowed to establish better relationships in the 2018 season respect to the MSI index and the 2019 season, (r&lt;sup&gt;2&lt;/sup&gt;=0.60 NDWI in 2018), as well as greater differences in terms of water stress presented in the vineyard.&lt;/p&gt;&lt;p&gt;With the spectral index calculated, it has been possible to validate the use of these index for the determination of the water stress of the vineyard plants, as an efficient, fast and less expensive method, which allows the application of an efficient irrigation system in the vineyard.&lt;/p&gt;


2021 ◽  
Author(s):  
Luz Karime Atencia ◽  
María Gómez del Campo ◽  
Gema Camacho ◽  
Antonio Hueso ◽  
Ana M. Tarquis

&lt;p&gt;Olive is the main fruit tree in Spain representing 50% of the fruit trees surface, around 2,751,255 ha. Due to its adaptation to arid conditions and the scarcity of water, regulated deficit irrigation (RDI) strategy is normally applied in traditional olive orchards and recently to high density orchards. The application of RDI is one of the most important technique used in the olive hedgerow orchard. An investigation of the detection of water stress in nonhomogeneous olive tree canopies such as orchards using remote sensing imagery is presented.&lt;/p&gt;&lt;p&gt;In 2018 and 2019 seasons, data on stem water potential were collected to characterize tree water state in a hedgerow olive orchard cv. Arbequina located in Chozas de Canales (Toledo). Close to the measurement&amp;#8217;s dates, remote sensing images with spectral and thermal sensors were acquired. Several vegetation indexes (VI) using both or one type of sensors were estimated from the areas selected that correspond to the olive crown avoiding the canopy shadows.&lt;/p&gt;&lt;p&gt;Nonparametric statistical tests between the VIs and the stem water potential were carried out to reveal the most significant correlation. The results will be discussing in the context of robustness and sensitivity between both data sets at different phenological olive state.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;ACKNOWLODGEMENTS&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Financial support provided by the Spanish Research Agency co-financed with European Union FEDER funds (AEI/FEDER, UE, AGL2016-77282-C3-2R project) and Comunidad de Madrid through calls for grants for the completion of Industrial Doctorates, is greatly appreciated.&lt;/p&gt;


OENO One ◽  
2013 ◽  
Vol 47 (4) ◽  
pp. 269 ◽  
Author(s):  
Edoardo Antonio Costantino Costantini ◽  
Alessandro Agnelli ◽  
Pierluigi Bucelli ◽  
Aldo Ciambotti ◽  
Valentina Dell’Oro ◽  
...  

<p style="text-align: justify;"><strong>Aim</strong>: To evaluate the relationship between carbon isotope ratio (δ<sup>13</sup>C) and wine grape viticultural and oenological performance in organic farming.</p><p style="text-align: justify;"><strong>Methods and results</strong>: The study was carried out for four years in the Chianti Classico wine production district (Central Italy), on five non irrigated vineyards conducted in organic farming. The reference variety was Sangiovese. Eleven sites were chosen for vine monitoring and grape sampling. The performance parameters were alcohol and must sugar content, sugar accumulation rate, mean berry weight, and extractable polyphenols. δ<sup>13</sup>C, stem water potential, and soil water availability were also monitored. Finally, soil nitrogen as well as yeast available nitrogen in the must were measured. δ<sup>13</sup>C was directly related to stem water potential and soil water deficit, and indicated a range of water stress conditions from none and moderate to strong. However, its relationship with viticultural and oenological results was contrary to expectation, that is, performance linearly increased along with soil moisture. On the other hand, the worst performance was obtained where both water and nitrogen were more limiting.</p><p style="text-align: justify;"><strong>Conclusions</strong>: The unexpected relationship between δ<sup>13</sup>C and Sangiovese performance was caused by low nitrogen availability. The studied sites all had low-fertility soils with poor or very poor nitrogen content. Therefore, in the plots where soil humidity was relatively higher, nitrogen plant uptake was favoured, and Sangiovese performance improved. Macronutrient being the main limiting factor, the performance was not lower in the plots where soil water availability was relatively larger. Therefore, the best viticultural result was obtained with no water stress conditions, at low rather than at intermediate δ<sup>13</sup>C values.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Water nutrition is crucial for wine grape performance. δ<sup>13</sup>C is a method used to assess vine water status during the growing season and to estimate vine performance. A good performance is expected at moderate stress and intermediate δ<sup>13</sup>C values. A better knowledge of the interaction between water and nutrient scarcity is needed, as it can affect the use of δ<sup>13</sup>C to predict vine performance.</p>


1995 ◽  
Vol 120 (4) ◽  
pp. 577-582 ◽  
Author(s):  
Amos Naor ◽  
Isaac Klein ◽  
Israel Doron

The sensitivity of leaf (ψleaf) and stem (ψstem) water potential and stomatal conductance (gs) to soil moisture availability in apple (Malus domestics Borkh.) trees and their correlation with yield components were studied in a field experiment. Two drip irrigation treatments, 440 mm (H) and 210 mm (L), were applied to a `Golden Delicious' apple orchard during cell enlargement stage (55-173 days after full bloom). Data collected included ψstem, y leaf, gs, and soil water potential at 25 (ψsoil-25) and 50 cm (ψsoil-50). No differences in midday ψleaf's were found between irrigation treatments. Stem water potential was higher in the H treatment than in the L treatment in diurnal measurements, and at midday throughout the season. Stomatal conductance of the H treatment was higher than the L treatment throughout the day. Stomatal conductance between 0930 and 1530 hr were highly correlated with ψstem. The H treatment increased the percentage of fruit >65 mm, and increased the proportion of earlier harvested fruit reaching marketable size compared to the L treatment. Fruit size in the first harvest and the total yield were highly correlated with ψstem. The degree of correlation between plant water stress indicators and yield component decreased in the following order: ψstem>ψsoil-25,>ψsoil-50>ψleaf. The data suggest that midday ψstem may serve as a preferable plant water stress indicator with respect to fruit size.


2020 ◽  
Author(s):  
Pablo Berrios ◽  
Abdelmalek Temnani ◽  
David Pérez ◽  
Ismael Gil ◽  
Susana Zapata ◽  
...  

&lt;p&gt;The sensitivity to water stress of different plant water indicators (PWI) at different plot scales (leaf and aerial) was evaluated during the second fruit growth stage of grapefruit (&lt;em&gt;Citrus paradisi&lt;/em&gt; cv. Star Ruby) trees growing in a commercial orchard for a sustainable irrigation scheduling. Trees were drip-irrigated and submitted to two irrigation treatments: (i) a control (CTL), irrigated at 100% of crop evapotranspiration to avoid any soil water limitations, and (ii) a non-irrigated (NI) treatment, irrigated as the control until the 104 days after full bloom (DAFB) when the irrigation was suppressed, until to reach a severe water stress level in the plants (around -2.3 MPa of stem water potential at solar midday). The plant water indicators studied were: stem water potential (SWP); leaf conductance (Lc); net photosynthesis (Pn), and several vegetation indices (VI) in the visible spectral region derived from an unmanned aerial vehicle equipped with a multispectral sensor. The measurements were made at 9, 12 and 18h (solar time) on 50 and 134 DAFB, coinciding with a fruit diameter of 20 and 70 mm, respectively. The correlation analysis between the PWI at leaf scale (SWP, Lc and Pn) and at aerial scale showed relatively poor results, with Pearson correlation coefficients (r values) around 0.6. However, SWP presented the highest r value with the normalized difference vegetation index (NVDI), green index (GI), normalized difference greenness vegetation index (NDGI) and red green ratio index (RGRI) showing the higher coefficients 0.80, 0,80, 0.85 and 0.86, respectively. In addition, a quadratic regression curve fitting was made for the SWP and aforementioned indices, obtaining values &amp;#8203;&amp;#8203;of R&lt;sup&gt;2&lt;/sup&gt; around 0.7 in all cases; the best fit corresponded to SWP = - 4.869 + 15.765 NDGI - 14.283 NDGI&lt;sup&gt;2&lt;/sup&gt; (R&lt;sup&gt;2 &lt;/sup&gt;= 0.749) to predict SWP values between -0.5 and -2.3 MPa. Results obtained show the possibility of using certain vegetation indices to be used in the detection of water stress in adult grapefruits, and thus propose a sustainable and efficient irrigation scheduling.&lt;/p&gt;&lt;p&gt;Funding:&lt;/p&gt;&lt;p&gt;-WATER4EVER is funded by the European Commission under the framework of the ERA-NET COFUND WATERWORKS 2015 Programme&lt;/p&gt;&lt;p&gt;-RIS3MUR REUSAGUA is funded by the Consejer&amp;#237;a de Empresa, Industria y Portavoc&amp;#237;a of the Murcia Region under the Feder Operational Program 2014-2020&lt;/p&gt;


2007 ◽  
Vol 58 (7) ◽  
pp. 670 ◽  
Author(s):  
Mark G. O'Connell ◽  
Ian Goodwin

Crop water relations, vegetative and reproductive growth, and soil water status were studied during 2 seasons to determine the effectiveness of partial rootzone drying (PRD) in a mature micro-irrigated pear orchard in the Goulburn Valley, Australia. PRD treatments were 50% (PRD50) and 100% (PRD100) of predicted crop water requirement (ETc) applied on one side of the tree alternated on a 14-day cycle compared with a Control treatment, which received 100% of ETc irrigated on both sides of the tree. Irrigation was applied daily by micro-jets to replace ETc estimated using reference crop evapotranspiration (ETo) and a FAO-56 crop coefficient of 1.15 adjusted for tree size. The PRD50 regime applied 174–250 mm for the season v. 347–470 mm for both the Control and PRD100 treatments. Irrigation maintained a well watered rootzone under the emitter compared with the drying profiles of the alternated wet/dry irrigated zones of the PRD treatments. There was no significant benefit of PRD100 compared with the Control irrigation regime. Similar vegetative growth (canopy radiation interception), reproductive growth (fruit growth rate, final fruit size, yield), fruit quality (total soluble solids, flesh firmness), and crop water relations (midday leaf conductance, midday leaf and stem water potential) were measured between the Control and PRD100. Trees under the PRD50 regime showed symptoms of severe water stress, that being greater fruit drop, reduced fruit size, lower yield, reduced leaf conductance, and lower leaf and stem water potential. The 50% water saving afforded by PRD50 led to a yield penalty of 16–28% compared with the Control and PRD100. PRD50 fruit failed to meet commercial cannery requirements due to poor fruit size. We conclude from an agronomic basis that deficit PRD irrigation management is not recommended for micro-irrigated pear orchards on fine-textured soils in the Goulburn Valley, Australia.


2021 ◽  
Vol 25 (3) ◽  
pp. 1411-1423 ◽  
Author(s):  
Xiangyu Luan ◽  
Giulia Vico

Abstract. Crop yield is reduced by heat and water stress and even more when these conditions co-occur. Yet, compound effects of air temperature and water availability on crop heat stress are poorly quantified. Existing crop models, by relying at least partially on empirical functions, cannot account for the feedbacks of plant traits and response to heat and water stress on canopy temperature. We developed a fully mechanistic model, coupling crop energy and water balances, to determine canopy temperature as a function of plant traits, stochastic environmental conditions, and irrigation applications. While general, the model was parameterized for wheat. Canopy temperature largely followed air temperature under well-watered conditions. But, when soil water potential was more negative than −0.14 MPa, further reductions in soil water availability led to a rapid rise in canopy temperature – up to 10 ∘C warmer than air at soil water potential of −0.62 MPa. More intermittent precipitation led to higher canopy temperatures and longer periods of potentially damaging crop canopy temperatures. Irrigation applications aimed at keeping crops under well-watered conditions could reduce canopy temperature but in most cases were unable to maintain it below the threshold temperature for potential heat damage; the benefits of irrigation in terms of reduction of canopy temperature decreased as average air temperature increased. Hence, irrigation is only a partial solution to adapt to warmer and drier climates.


Sign in / Sign up

Export Citation Format

Share Document