scholarly journals Modern fire safety systems in shopping and entertainment centers

2021 ◽  
Vol 6 (3) ◽  
pp. 303-308
Author(s):  
Yu. V. Reva ◽  
T. N. Gerasimova

Currently, the number of shopping centers in Russia is increasing. For their construction, new combustible materials and design solutions are used. This creates a high fire load and requires fire safety measures. To ensure the fire safety of visitors, structural features of buildings are essential; it is also crucial to take into account the psychophysiological characteristics of people in these buildings and their level of familiarity with the main structural elements of the building, willingness to find the fire sign and do their best to leave the building. The article describes promising fire safety systems for shopping centers, their advantages and disadvantages. A specialized system of fire extinguishing means consisting of interconnected software controls and structures and a gas fire extinguishing system and smoke curtains are described.

2020 ◽  
pp. 77-81
Author(s):  
A. K. Sabirova ◽  
D. V. Kurskiy

The article is devoted to fire safety offenses committed in shopping centers, problematic issues of preventing these offenses. The main reasons for violations of fire safety requirements by the authors include cost savings on the provision of fire safety measures by the owners of shopping centers, which to some extent contributes to their impunity.


2015 ◽  
Vol 10 (4) ◽  
pp. 584-585
Author(s):  
Masafumi Hosokawa ◽  

Fire departments are expected to respond quickly and effectively to disasters by extinguishing fires and rescuing those in harm’s way, for example. They are also required to prevent fires and disasters by enforcing fire-prevention measures at hotels and care facilities and to monitor safety measures in facilities storing hazardous materials. Concerns have arisen that destructive disasters may occur due to environmental changes in local communities or due to the Tokyo Metropolitan earthquake or Nankai Trough earthquake. To ensure that fire departments use their firefighters, materials and equipment effectively to prevent or control fires and reduce damage of disasters, research and development (R&D) on fire safety and disaster preparedness must be conducted actively and resulting findings must be applied in advanced fire safety and disaster preparedness activities. Fire safety R&D in Japan is undertaken by the National Research Institute of Fire and Disaster,which is the research organ of the Fire and Disaster Management Agency. Here R&D is being conducted on safety measures for facilities storing hazardous materials, fire-fighting robot technology, and fire extinguishing techniques. Fire departments in major cities also study firefighting operations and advanced materials and equipment. Although the number of institutions directly conducting fire safety R&D is limited and allotted research and development budget is extremely small. Private-sector R&D in fire safety unfortunately cannot be described as vigorous because it focuses on equipment used by fire department personnel and fire-safety facilities required by law, such as fire engines and rescue materials and equipment, fire sensors, fire extinguishing systems, etc., whose market is limited. To conduct innovative fire extinguishing R&D on equipment that could dramatically improve fire-fighting efficiency, it is important to inform research institutions and private firms of the issues and needs in fire safety rather than to make efforts solely among organizations involved in fire safety and to conduct research by engaging a wide range of researchers from the pure sciences in practical technologies. The Fire and Disaster Management Agency of the Ministry of Internal Affairs and Communications set up a competitive research funding effort in fiscal 2003 called Promoting Program for Scientific Fire and Disaster Prevention Technologies (Competitive Research Funding Program) to promote R&D based on the collaboration of industry, academia, and the national government. This competitive research program solicits research proposals for promoting advances in fire safety and disaster preparedness science and technology and achieving safe and secure society. It involves researchers in industry, academia, and government and provides funding for proposals considered worth promoting. Some 104 studies had been completed under this program by fiscal 2014. The Kitakyushu municipal fire department, for instance, proposed developing a fire extinguishing composition able to extinguish fires using only a small amount of water. After building a system for collaboration with the University of Kitakyushu and local industries, they developed such a composition based on a natural surfactant whose use has greatly reduced the environmental load and whose performance meets the needs of fire-fighting operations conducted by fire department personnel in general fires. The team earned the Minister of Internal Affairs and Communications Award in the Fifth Merit Awards for Industry/Academia/Government Collaboration in fiscal 2007. In publishing the special issue on Fire and Disaster Prevention Technologies edited by Prof.Tomonori Kawano, Prof. Kazuya Uezu, and Prof. Takaaki Kato of the Research and Development Center of Fire and Environmental Safety, the University of Kitakyushu, it is shown that fire safety and disaster preparedness R&D undertaken by universities, local industries, and fire departments in Kitakyushu is proceeding on in an expanded scale. It is hoped that such undertakings and their findings will be extended to other areas, thus further promoting R&D in fire safety.


2019 ◽  
Vol 1 (1) ◽  
pp. 490-497
Author(s):  
Patrycja Górniak ◽  
Andrzej Sobczyk ◽  
Janusz Pobędza

AbstractThe subject of the article is the integration of a new CO2 fire extinguishing weighing system to the panel displaying the status of Compact Muon Solenoid (CMS) detector safety systems (CMS Safety Panel) at CERN. The CO2 fire extinguishing system is responsible for protection of unique control devices, so safety of its operation and the weighing system was designed to monitor the state of it and make it reliable. CMS Safety Panel displays status of safety systems used in CMS Experiment and it is based on JCOP Framework that guarantee compatibility of all the projects. The integration of the new CO2 fire extinguishing system to the CMS Safety Panel requires that the system meets the assumptions that other projects fulfil and allows for clear monitoring of its situation along with the rest of the security systems.


1986 ◽  
Vol 10 (3-4) ◽  
pp. 141-143 ◽  
Author(s):  
T. Z. Harmathy
Keyword(s):  

2004 ◽  
Vol 78 (14) ◽  
pp. 7619-7633 ◽  
Author(s):  
Guohua Zhang ◽  
Jiuchun Zhang ◽  
Anne E. Simon

ABSTRACT Plus-strand viral RNAs contain sequences and structural elements that allow cognate RNA-dependent RNA polymerases (RdRp) to correctly initiate and transcribe asymmetric levels of plus and minus strands during RNA replication. cis-acting sequences involved in minus-strand synthesis, including promoters, enhancers, and, recently, transcriptional repressors (J. Pogany, M. R. Fabian, K. A. White, and P. D. Nagy, EMBO J. 22:5602-5611, 2003), have been identified for many viruses. A second example of a transcriptional repressor has been discovered in satC, a replicon associated with turnip crinkle virus. satC hairpin 5 (H5), located proximal to the core hairpin promoter, contains a large symmetrical internal loop (LSL) with sequence complementary to 3′-terminal bases. Deletion of satC 3′-terminal bases or alteration of the putative interacting bases enhanced transcription in vitro, while compensatory exchanges between the LSL and 3′ end restored near-normal transcription. Solution structure analysis indicated that substantial alteration of the satC H5 region occurs when the three 3′-terminal cytidylates are deleted. These results indicate that H5 functions to suppress synthesis of minus strands by sequestering the 3′ terminus from the RdRp. Alteration of a second sequence strongly repressed transcription in vitro and accumulation in vivo, suggesting that this sequence may function as a derepressor to free the 3′ end from interaction with H5. Hairpins with similar sequence and/or structural features that contain sequence complementary to 3′-terminal bases, as well as sequences that could function as derepressors, are located in similar regions in other carmoviruses, suggesting a general mechanism for controlling minus-strand synthesis in the genus.


2020 ◽  
Vol 29 (3) ◽  
pp. 6-17
Author(s):  
S. G. Tsarichenko ◽  
V. V. Kolesnikov ◽  
N. I. Konstantinova ◽  
Z. Yu. Kozinda

Sign in / Sign up

Export Citation Format

Share Document