How to Provide Quality of Service Guarantees in the Internet? Lessons Learnt from the Airline and Card-Based Payment Sectors

2010 ◽  
Author(s):  
Zouhaïer M'Chirgui ◽  
Thierry Pénard
2008 ◽  
pp. 1781-1788
Author(s):  
Christos Bouras ◽  
Apostolos Gkamas ◽  
Dimitris Primpas ◽  
Kostas Stamos

The heterogeneous network environment that Internet provides to real time applications as well as the lack of sufficient QoS (Quality of Service) guarantees, many times forces applications to embody adaptation schemes in order to work efficiently. In addition, any application that transmits data over the Internet should have a friendly behaviour towards the other flows that coexist in today’s Internet and especially towards the TCP flows that comprise the majority of flows. We define as TCP friendly flow, a flow that consumes no more bandwidth than a TCP connection, which is traversing the same path with that flow (Pandhye 1999).


Author(s):  
Harry G. Perros

When we call someone over the internet using a service such as Skype or Google talk, we may experience certain undesirable problems. For instance, we may not be able to hear the other person very well, or even worse, the call may be dropped. In order to eliminate these problems, the underlying IP network has to be able to provide quality of service guarantees. Several schemes have been developed that enable the IP network to provide such guarantees. Of these schemes, the multi-protocol label switching (MPLS) and the differentiated services (DiffServ) are the most widely used. In this chapter, some of the salient features of MPLS and DiffServ are reviewed.


2011 ◽  
pp. 37-51
Author(s):  
William D. Kearns

Dubbed as the next “Killer Application” (Hanss, 2001), digital video’s anticipated impact on computer networks is enormous. Few other applications are so severely impacted by networks incapable of delivering quality of service guarantees for the latency and delay with which video stations receive information packets. The goal of this chapter is to briefly discuss the teaching and research uses of video materials in academic environments, inform librarians of the various forms into which video materials may be encoded, the strengths and weaknesses of the media formats, and to argue for a comprehensive implementation plan when considering the distribution of video resources. We will conclude the chapter with an illustration of how one academic library employed database technology to create a video card catalog accessible from the Internet.


Author(s):  
Christos Bouras ◽  
Apostolos Gkamas ◽  
Dimitris Primpas ◽  
Kostas Stamos

The heterogeneous network environment that Internet provides to real time applications as well as the lack of sufficient QoS (Quality of Service) guarantees, many times forces applications to embody adaptation schemes in order to work efficiently. In addition, any application that transmits data over the Internet should have a friendly behaviour towards the other flows that coexist in today’s Internet and especially towards the TCP flows that comprise the majority of flows. We define as TCP friendly flow, a flow that consumes no more bandwidth than a TCP connection, which is traversing the same path with that flow (Pandhye 1999).


Author(s):  
Harry G. Perros

When we call someone over the Internet using a service such as Skype or Google talk, we may experience certain undesirable problems. For instance, we may not be able to hear the other person very well, or even worse, the call may be dropped. In order to eliminate these problems, the underlying IP network has to be able to provide quality of service guarantees. Several schemes have been developed that enable the IP network to provide such guarantees. Of these schemes, the Multi-Protocol Label Switching (MPLS) and the Differentiated Services (DiffServ) are the most widely used. In this article, some of the salient features of MPLS and DiffServ are reviewed.


2020 ◽  
Vol 10 (3) ◽  
pp. 1152 ◽  
Author(s):  
Iffrah Tanseer ◽  
Nadia Kanwal ◽  
Mamoona Naveed Asghar ◽  
Ayesha Iqbal ◽  
Faryal Tanseer ◽  
...  

There is an increasing number of devices available for the Internet of Multimedia Things (IoMT). The demands these ever-more complex devices make are also increasing in terms of energy efficiency, reliability, quality-of-service guarantees, higher data transfer rates, and general security. The IoMT itself faces challenges when processing and storing massive amounts of data, transmitting it over low bandwidths, bringing constrained resources to bear and keeping power consumption under check. This paper’s research focuses on an efficient video compression technique to reduce that communication load, potentially generated by diverse camera sensors, and also improve bit-rates, while ensuring accuracy of representation and completeness of video data. The proposed method applies a video content-based solution, which, depending on the motion present between consecutive frames, decides on whether to send only motion information or no frame information at all. The method is efficient in terms of limiting the data transmitted, potentially conserving device energy, and reducing latencies by means of negotiable processing overheads. Data are also encrypted in the interests of confidentiality. Video quality measurements, along with a good number of Quality-of-Service measurements demonstrated the value of the load reduction, as is also apparent from a comparison with other related methods.


Sign in / Sign up

Export Citation Format

Share Document